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Abstract

Individuals use models to guide decisions, but many models are wrong. This
paper studies which misspecified models are likely to persist when individuals also
entertain alternative models. Consider an agent who uses her model to learn the
relationship between action choices and outcomes. The agent exhibits sticky model
switching, captured by a threshold rule such that she switches to an alternative
model when it is a sufficiently better fit for the data she observes. The main result
provides a characterization of whether a model persists based on two key features
that are straightforward to derive from the primitives of the learning environment,
namely, the model’s asymptotic accuracy in predicting the equilibrium pattern of
observed outcomes and the ‘tightness’ of the prior around this equilibrium. I show
that misspecified models can be robust in that they persist against a wide range
of competing models—including the correct model—despite individuals observing
an infinite amount of data. Moreover, simple misspecified models with entrenched
priors can be even more robust than correctly specified models. I use this charac-
terization to provide a learning foundation for the persistence of systemic biases in
two applications. First, in an effort-choice problem, I show that overconfidence in
one’s ability is more robust than underconfidence. Second, a simplistic binary view
of politics is more robust than the more complex correct view when individuals
consume media without fully recognizing the reporting bias.

*University of Pennsylvania. Email: cuiminba@sas.upenn.edu. I am deeply indebted to George
Mailath, Aislinn Bohren, and Kevin He for their guidance and support at every stage of this paper.
I thank Nageeb Ali, Ben Brooks, Armin Falk, Hanming Fang, Mira Frick, Drew Fudenberg, Yuan
Gao, Alice Gindin, Marina Halac, Takuma Habu, Daniel Hauser, Ju Hu, Yuhta Ishii, Nawaaz Khalfan,
Botond Koszegi, Changhwa Lee, Jonathan Libgober, Xiao Lin, Ce Liu, Steven Matthews, Guillermo
Ordonez, Pietro Ortoleva, Wolfgang Pesendorfer, Andrew Postlewaite, Alvaro Sandroni, Pedro Solti,
Juuso Toikka, Marcus Tomaino, Rakesh Vohra, Xi Weng, Ece Yegane and conference audiences for
helpful comments and suggestions.


https://cuiminba.com/uploads/Robust_models.pdf

1 Introduction

People use models to guide decision making, but the subjective nature of models sug-
gests that model misspecification can be pervasive. Model misspecification can stem
from the need to simplify the complex world as well as from behavioral biases such as
overconfidence or correlation neglect. To explore how misspecified models impact beliefs
and actions, the growing literature on misspecified learning focuses on the case of a
dogmatic agent who uses a particular misspecified model and never considers changing
this model.! While this simplifies the environment in a way that yields tractable char-
acterizations of long-run beliefs, it leaves open the question of whether it is realistic to
expect an agent to never abandon a wrong model.

A plethora of evidence suggests that people often switch models when an alterna-
tive seems more compelling. For example, scientists adopt a new paradigm if it fits
the observable data significantly better in terms of accuracy and simplicity (i.e., Kuhn’s
(1962) theory of paradigm shifts). One classic example is the paradigm shift from the
Ptolemaic model to the Copernican model in astronomy. Likewise, economists develop
and adopt new models when evidence comes to light that important economic forces
are missing from old models. Outside the realm of science, people alter their subjec-
tive assumptions about the world in daily life, such as changing thinking patterns in
cognitive behavioral therapy or striving to overcome implicit biases through introspec-
tion (Wegener and Petty, 1997; Di Stefano, Gino, Pisano, and Staats, 2015). They are
also influenced by and attracted to different political narratives as they receive more
information (Fisher, 1985; Braungart and Braungart, 1986).

If individuals consider switching to competing models, which (if any) misspecified
models should we expect to persist and when? This paper proposes a novel learning
framework to address this question. In this framework, an agent uses models to learn
an unknown fixed data-generating process that governs the relationship between her
action choices and random outcomes. Each model is a parametric theory of how actions

affect the outcome distribution. Formally, this consists of a finite parameter space and

I'Examples include: a monopolist trying to estimate the slope of the demand function when the
true slope lies outside of the support of his prior (Nyarko, 1991; Fudenberg, Romanyuk, and Strack,
2017); agents learning from private signals and other individuals’ actions while neglecting the corre-
lation between the observed actions (Eyster and Rabin, 2010; Ortoleva and Snowberg, 2015; Bohren,
2016) or overestimating how similar others’ preferences are to their own (Gagnon-Bartsch, 2017); over-
confident agents falsely attributing low outcomes to an adverse environment (Heidhues, Kdszegi, and
Strack, 2018, 2019; Ba and Gindin, 2022); a decision maker imposing false causal interpretations on
observed correlations (Spiegler, 2016, 2019, 2020); a gambler who flips a fair coin mistakenly believing
that future tosses must exhibit systematic reversal (Rabin and Vayanos, 2010; He, 2022); individuals
narrowly focusing their attention on only a few aspects rather than a complete state space (Mailath
and Samuelson, 2020).



a collection of possible data-generating processes indexed by the parameter values. For
example, consider a monopolist who chooses production quantities based on a linear
model of consumer demand. Here, for each pair of parameter values—fixing the slope
and intercept of the demand curve—the model prescribes a mapping from production
quantities to distributions of consumer demand. While the dogmatic modeler typically
considered in the misspecified learning literature uses the same model throughout, in
my framework the agent is a switcher who entertains multiple models. For the main
analysis, this agent starts with an initial model and entertains exactly one competing
model. She subscribes to one model at any point in time to guide decisions but may
switch to the other model depending on the history of outcome realizations. Specifically,
the agent has a prior over the parameters within each model, uses her current model to
update her belief given the data she observes, and plays the optimal action given the
associated posterior in the current model. To decide whether to switch to a competing
model, the agent keeps track of the Bayes factor—the likelihood ratio of the competing
model relative to the current model given the observed data—and switches if it exceeds a
fixed switching threshold. As the switching threshold increases, model switching requires
more evidence and becomes stickier.

One may wonder why the agent does not conduct Bayesian updating over the mod-
els and average out their predictions. As pointed out in Savage’s (1972) Foundations
of Statistics, Bayesianism is a reasonable description of human behavior only when de-
cision makers focus on “modest little worlds.”? It is implausible to expect people to
attach well-articulated probabilities to all models of the world given that models con-
tain conceptually incoherent or even conflicting ideas, such as a geocentric model versus
a heliocentric model, or a liberal worldview versus a conservative worldview. Therefore,
this paper adopts a natural choice of non-Bayesian rule based on the Bayes factors.

Within this framework, I next formalize notions of model persistence and robustness.
A model is said to persist against a competing model if, with positive probability, the
agent eventually stops switching and sticks to this model forever. Further, a model is
robust if it persists against a wide range of competing models. Critically, the scope of
robustness may vary considerably with the set of admissible competing models in terms of
their distance from the initial model (i.e. step size of switching) and the dimensions along
which they differ from the initial model (i.e. direction of switching). I consider three
different robustness notions with varying restrictions on the step size and the direction of
switching. Fixing a prior, a model is globally robust if it persists against any competing

model associated with any prior over the parameter space, including the true model;

2Savage (1972, p. 16) describes it as “utterly ridiculous” to demand that “one envisage every con-
ceivable policy for the government of his whole life (at least from now on) in its most minute details, in
the light of the vast number of unknown states of the world, and decide here and now on one policy.”



Notions of robustness

Properties global local  constrained local
asymptotic accuracy high high low
prior tightness high none none

Table 1: Summary of results.

it is locally robust if it persists against local perturbations with similar predictions and
similar priors; and finally, constrained locally robust if it persists against structured local
perturbations that are constrained to a particular parametric family. Which robustness
notion is the most appropriate depends on the context of different applications. For
example, global robustness is most appropriate when the agent can “think outside the
box”, potentially due to a vibrant culture of innovation, whereas local notions are more
suitable when the agent is conservative and only takes small steps. The constrained
notion is appropriate when the agent does not completely forgo structural assumptions
of the model, such as linearity or normality, and only contemplates competing models
that lie in restricted directions relative to the original one. These notions provide a
language to compare the robustness properties of models across different environments,
and their formalization is a central conceptual contribution of my framework.

My main result characterizes when a model satisfies each robustness notion based
on two properties that are easily derived from the primitives of the model: asymptotic
accuracy and prior tightness, as summarized in Table 1. A model has high asymptotic
accuracy when it gives rise to a self-confirming equilibrium that satisfies a stability
condition called p-absorbingness. In a self-confirming equilibrium, the agent holds a
supporting belief over the model parameters such that the model prediction perfectly
coincides with the objective outcome distribution. The stability condition requires that a
dogmatic modeler who only uses this model eventually only plays actions in the support
of the equilibrium with positive probability. With high asymptotic accuracy, the model
has weakly higher explanatory power than any other competing model with positive
probability in the limit. However, this limit condition alone does not imply persistence,
because the learning dynamics may induce the agent to switch away before she comes
close to the equilibrium belief. When the associated prior is tight in the sense of being
concentrated around the set of p-absorbing self-confirming equilibria, the explanatory
power of the model remains consistently high across all periods, leading to persistence.

I start by characterizing which models can be locally or globally robust for at least
one full-support prior. It is natural to conjecture that local robustness is much weaker

than global robustness. Surprisingly, Theorem 1 establishes that a model is globally



robust for at least one prior if and only if it is locally robust for at least one prior, and
both amount to a requirement for high asymptotic accuracy. In this regard, persisting
against local perturbations is as demanding as persisting against fundamentally different
paradigms. The intuition for this result is that, when high asymptotic accuracy fails, the
model can be improved locally by perturbing all of its predictions towards the direction
of the true data-generating process. Moreover, Theorem 1 holds for all levels of the
switching threshold. Even if the agent is extremely reluctant to switch, the accumulation
of evidence over time eventually leads to the abandonment of a less accurate model. Note
that, however, high asymptotic accuracy does not equate to high efficiency—strictly
suboptimal actions can be played in a self-confirming equilibrium if the model yields
wrong predictions off-path.

Next, I characterize when, or under which priors, the models characterized earlier
are locally or globally robust. Theorem 2 reveals the real distinction between global
and local robustness: the former requires high prior tightness but the latter does not.
I provide an exact closed-form quantification of the required level of tightness in terms
of the switching threshold. Specifically, the prior probability assigned to the parameters
associated with the relevant self-confirming equilibria must exceed the inverse of the
switching threshold. Therefore, higher switching stickiness facilitates robustness not by
expanding the set of qualified models, but by allowing for more diffuse priors.

By contrast, neither high asymptotic accuracy nor prior tightness is necessary for
constrained local robustness (Theorems 3 and 4). Rather, constrained local robustness
only requires the model to have asymptotic accuracy relatively higher than the admissible
structured local perturbations, captured by the existence of a p-absorbing Berk-Nash
equilibrium at which the model is locally dominant with respect to the constrained
family. As the family enlarges to the universe of all models, as expected, such a Berk-
Nash equilibrium morphs into a self-confirming equilibrium.

This general characterization provides a learning foundation for the persistence of
certain forms of model misspecification. A misspecified model can be robust against
arbitrary competing models—including the true model—despite the agent having an
infinite amount of data. When competing models are further constrained, misspecified
models can be robust even with lower asymptotic accuracy. The results provide off-the-
shelf tools to predict which underlying behavioral biases are more relevant in specific
contexts. In an application, I show that overconfidence is globally robust while under-
confidence is non-robust for a wide range of parameters. This characterization can be
particularly useful in generating testable predictions for empirical research and suggest-
ing behavioral policies to mitigate the consequences of misspecification. For example, the

application suggests that underconfidence requires less intervention than overconfidence



as it is self-correcting.

This characterization also yields novel predictions about how qualitative features
of the model and the switching environment affect persistence. First, an interesting
contrast emerges between the robustness properties between misspecified and correctly
specified models. On one hand, all correctly specified models have the high asymptotic
accuracy that only a subset of misspecified models can achieve. On the other hand, a
correctly specified model may be associated with a less tight prior as compared to a
misspecified one, especially when the latter has a smaller parameter space or gives rise
to a large number of self-confirming equilibria. Perhaps surprisingly, this implies that
some misspecified models can be more robust than correctly specified models, precisely
because they are sufficiently extreme and misleading. Second, lower switching stickiness
can be a double-edged sword, since it makes global robustness harder to obtain for
any model. While it is easier to switch away from a misspecified model, due to noisy
information, it is also easier to abandon a correctly specified model and get stuck with
a misspecified alternative. I apply these observations to a media consumption problem
and demonstrate that an extreme binary worldview can outperform and even replace
the correct worldview, leading to persistent polarization in political beliefs.

The rest of the paper is organized as follows. The next subsection discusses related
literature. Section 2 provides an illustrative example. Section 3 introduces the learning
framework. Section 4 characterizes local and global robustness, and Section 5 charac-
terizes constrained local robustness. Next, Section 6 discusses two applications of the
characterization results. Section 7 discusses the extensions of the model switching frame-
work and Section 8 concludes. Appendix A contains useful auxiliary results, Appendix
B includes all proofs of the main results, and Appendix C contains examples omitted

from the main text.

Related Literature

This paper builds on the growing literature on learning with misspecified models. Much
of that literature mentioned in Footnote 1 focuses on case-by-case analyses of misspecified
models. In contrast, this paper characterizes robust misspecified models in general
environments with simple conditions on the primitives, providing a microfoundation for
their persistence. Another strand of this literature studies equilibrium concepts when the
decision maker is a dogmatic modeler. Esponda and Pouzo (2016) propose the concept
of Berk-Nash equilibrium, generalizing the self-confirming equilibrium (Battigalli, 1987;
Fudenberg and Levine, 1993) by relaxing the requirement that the subjective prediction



fully coincides with the objective reality.® This paper deepens our understanding of
the distinction and the connection between the two solution concepts by relating self-
confirming equilibrium to unconstrained robustness notions and Berk-Nash equilibrium
to constrained robustness.

Recent contributions to the misspecified learning literature focus on characterizing
the asymptotic learning outcomes of dogmatic modelers in general environments. This
paper faces many of the same technical challenges as the works in this area since model
persistence partly hinges on the asymptotic behavior of a dogmatic modeler. Bohren
and Hauser (2021) provide criteria for local and global stability of strict Berk-Nash equi-
libria in settings with model heterogeneity. Esponda, Pouzo, and Yamamoto (2021) find
conditions for a single agent’s action frequency to converge to a Berk-Nash equilibrium
using tools from stochastic approximation. Fudenberg, Lanzani, and Strack (2021) es-
tablish that a uniformly strict Berk-Nash equilibrium is uniformly stable in the sense
that starting from any prior that is sufficiently close to the equilibrium belief, the dog-
matic modeler’s action converges to the equilibrium with arbitrarily high probability.
In this paper, I show that robustness is related to p-absorbingness, a different stability
notion that does not require the dogmatic modeler’s action to converge, but her action
to enter and eventually stay within the support of an equilibrium. Frick, Ilijima, and
Ishii (2023) introduce a prediction accuracy ordering over parameters within a model
and use martingale arguments to prove belief convergence. In Section 5, I use a similar
technique to compare prediction accuracy across models. This paper makes a technical
contribution to the literature by integrating model switching into a misspecified learn-
ing framework. Given that the agent has access to multiple models, we need to keep
track of multiple belief processes, all of which are generated by endogenous data. Most
importantly, the Bayes factor that governs the model switching process interacts and
correlates with all belief processes even when no switching has been made. In Section
4.3, I show such interaction can cause the adoption of some models to be self-defeating;
I resolve this difficulty by proposing a set of no-trap conditions.

This paper is most related to papers that explore why misspecified models persist.
Cho and Kasa (2015) also study model switching with endogenous data but assume
a different switching rule. They assume that the agent always compares the model
prediction with the empirical realizations and characterize dominant models based on
the speed of convergence to a self-confirming equilibrium. By contrast, a key conceptual

innovation of my framework is to view model robustness as a relative concept. The

30ther related concepts include the analogy-based expectation equilibrium in Jehiel and Koessler
(2008) and the cursed equilibrium in Eyster and Rabin (2005). As pointed out by Esponda and Pouzo
(2016), these two solution concepts coincide with Berk-Nash or self-confirming equilibrium under ap-
propriately specified feedback structures.



agent in my framework decides whether to switch by comparing the prediction quality
of her model relative to that of a competing model. Montiel Olea, Ortoleva, Pai, and
Prat (2022) characterize the “winner” model in a contest environment where agents use
models to predict an exogenous data-generating process and make auction bids based
on their subjective model prediction error. They identify a trade-off between model fit
and model estimation uncertainty when the dataset is small. In contrast, I show that
both asymptotic accuracy and prior tightness are important for robustness even with
an infinite amount of data. Gagnon-Bartsch, Rabin, and Schwartzstein (2020) study
the stability of models when the agent entertains a correctly specified alternative model.
They examine a setting where data is independent from actions but the agent only
pays attention to the data they deem decision-relevant given the current model. This
contrasts with my framework where data is endogenously generated by actions but the
agent pays attention to all available data.

Other papers approach this problem from an evolutionary or welfare perspective.
Fudenberg, Lanzani et al. (2022) study the evolutionary dynamics when a small share
of a large population mutates to enlarge their models at a Berk-Nash equilibrium. They
find that an equilibrium can resist mutations that yield a better statistical fit but induce
worse-performing actions. My results complement their findings by showing that a
model can persist against competing models that have lower asymptotic accuracy but
nevertheless induce better-performing actions. Moreover, similar to this paper, they
show that a self-confirming equilibrium resists every mutation.* He and Libgober (2020)
also evaluate competing models based on their expected objective payoffs but examine
multi-agent strategic games where misspecification can lead to beneficial misinferences.
Frick, Iijima, and Ishii (2021) study welfare comparisons of learning biases and find
that some biases can outperform Bayesian updating because they may lead to correct
learning at a faster speed.

An extensive literature in decision theory studies the behavior of a decision maker
who has access to multiple models or priors over states. Ortoleva (2012) proposes and
axiomatically characterizes an amendment to Bayes’ rule, called the Hypothesis Testing
model, where the agent switches to an alternative prior upon observing an event to
which she assigns a probability below a threshold. This contrasts with my framework
where the agent switches if the ratio of the probability of the observed outcomes under

the current model relative to the competing model is sufficiently low.” Karni and Vierg

4Despite the similarity, the underlying mechanisms of our results are different. Their result follows
from the assumption that every mutation is an expansion of the original model. Since the same self-
confirming equilibrium remains an equilibrium under the mutated model, it is possible for all individuals
in the population to stick to the same behavior as before the mutation.

5In my framework, even if a sequence of outcomes occur with low probability according to the
current model, the agent may not switch if the probability of those outcomes under the competing



(2013) provide a choice-based decision theory to model a self-correcting agent who can
expand his universe of subjective states. A number of canonical decision criteria capture
aversion to model uncertainty, e.g. the maxmin model (Gilboa and Schmeidler, 1989),
the smooth ambiguity aversion model (Klibanoff, Marinacci, and Mukerji, 2005), and the
robust control model (Hansen and Sargent, 2001). Battigalli, Francetich, Lanzani, and
Marinacci (2019) find that ambiguity aversion increases the likelihood that the decision
maker gets stuck into a self-confirming equilibrium. The key distinction is that the
agent in my framework does not have a prior over models; instead, she switches between
models based on their statistical fit.

A few papers entertain the idea that people can change models and explore its im-
plications in various settings. Mullainathan (2002) presents a model of “categorical
thinking” in which people switch between coarse categories and policies discontinuously,
resulting in overreaction to news. Galperti (2019) and Schwartzstein and Sunderam
(2021) extend the idea of alterable subjective models to a persuasion setting and study
how a principal could persuade an agent to accept a different worldview.

Finally, this paper is also related to the statistics literature on model selection. Statis-
ticians have developed a number of criteria that differ in their cost of computation and
penalty for overfitting, such as the Bayes factor, Akaike information criterion (AIC),
Bayesian information criterion (BIC), and likelihood-ratio test (LR test), and the ma-
chine learning community favors cross-validation due to its flexibility and ease of use
(Chernoff, 1954; Akaike, 1974; Stone, 1977; Schwarz et al., 1978; Kass and Raftery,
1995; Konishi and Kitagawa, 2008). This work focuses on the Bayes factor rule and dif-
fers with the statistical literature by studying an endogenous data-generating process. I

will come back to the comparison of different model selection rules in Section 3.3.

2 Illustrative Example

As a simple illustration of the learning framework and the main results, consider the
following example.® An artist chooses how much effort to exert in creating artwork
in every period, a; € {0,1,2}. Upon exerting effort, he incurs a cost a;(a; + 0.5) but
also obtains revenue from the sales of his work. The sales revenue takes a simple form:
Yy = (a; + b)w + €;, where b is the talent level of the artist, w is an unknown market
demand for arts, and ¢; captures a zero-mean random noise with a known distribution.

Suppose that the true talent is 1 and the true market demand is 2. If the artist has

model is also low.
ST build this example on Heidhues et al. (2018). In Section 6, I extend this example to allow for
more general payoffs and outcome distributions.



a correct belief about talent, he is able to correctly infer the market demand from the
sales data, allowing him to eventually choose the efficient effort level of 1.” However, the
artist is endowed with a misspecified model: while the artist knows the sales function,
he is overconfident or underconfident about his talent. In such a model, the unknown
market demand is a parameter to be estimated.® This modeling approach captures the
idea that individuals often commit fundamental attribution errors and thus are slower in
changing self-perceptions than in updating beliefs about the outside environment (Miller
and Ross, 1975).

Suppose the artist entertains competing models, are underconfidence and overconfi-
dence equally likely to persist? My results reveal an interesting asymmetry—overconfidence
tends to be more robust than underconfidence. This prediction is consistent with a large
amount of empirical evidence that people usually exhibit overconfidence instead of un-
derconfidence (Langer and Roth, 1975).

Let’s first consider the case of an underconfident artist who believes in a talent level
of b = 0 but entertains a correctly specified competing model that attaches positive
probability to the true talent b = 1. The artist is sticky in changing his model—he only
switches to an alternative model if that explains the observed sales data significantly
better. We can show that the underconfidence model does not persist because it has
strictly lower asymptotic accuracy than the competing model. To see why, first note
that underconfidence induces the artist to mistakenly attribute the higher-than-expected
sales to a high market demand and thus incentivizes a high effort. What comes next is
critical: a high effort choice then in turn induces a lower belief, correcting the artist’s
overestimation—due to complementarity, the marginal return to demand increases as
effort rises, so a smaller inference-truth gap suffices to explain the sales data. However,
repeating this logic, a lower belief in demand then decreases the effort and pushes up
the belief, generating a negative feedback loop. Specifically, an effort of 1 pushes the
artist’s belief towards a demand of 4 at which a higher effort is optimal, but an effort of

2 pushes the belief towards a demand of 3 at which a lower effort is optimal,
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Consequently, the artist’s effort cycles between 1 and 2 forever, and no single value

"More precisely, if the artist is correct about his talent, a sufficient and necessary condition for
correct learning is that the artist’s prior assigns positive probability to the true market demand.

8Heidhues et al. (2018) consider a dogmatic agent who never changes his model and show that both
over- and underconfidence lead to wrong inferences about market demand and inefficient choices of
effort in the long run.



of market demand can explain all data perfectly—the model admits no self-confirming
equilibrium. By contrast, a correctly specified competing model can always achieve
high prediction accuracy in the limit. Therefore, no matter how reluctant the artist is
to change his self-perception, he is going to abandon the initial model and correct his
underconfidence.

Next, let us turn to an overconfident artist who believes his talent level is instead given
by b = 2 but also entertains a correctly specified competing model. In contrast to the
previous case, the overconfidence model has high asymptotic accuracy. Overconfidence
induces the artist to mistakenly attribute the disappointing sales to low demand and
respond by exerting a low effort. Critically, a lower effort choice then induces an even
lower belief—the marginal return to market demand decreases as effort drops, so a larger
inference-truth gap is necessary to make sense of the disappointing sales. The positively
reinforcing dynamics eventually lead the artist to reach the false conclusion that the
market demand is w = 1 and play an inefficient choice of effort a = 0. Most importantly,
they constitute a self-confirming equilibrium: zero effort is optimal against the misguided
belief about the market demand, and this low belief perfectly matches the sales data

given the misspecified model, since

~

(G+b)-0o=0+2)-1=(a+b) - w=(0+1)-2=2.

At this steady state, the initial model and the competing model generate equally accurate
predictions; given the friction in model switching, this suggests that the artist sticks with
the overconfidence model with positive probability. But this is not the end of the story
yet—the equilibrium analysis suggests that overconfidence has the potential to persist in
the limit but does not rule out switches in the course of converging to the steady state.
The dynamic model switching framework introduced in Section 3 addresses this concern.
My characterization in Section 4 implies that the overconfidence model is globally robust
(and thus persists against the correctly specified competing model) when the associated
prior attaches sufficiently high probability to the low demand & = 1. Moreover, the

required prior tightness is inversely related to the switching stickiness.
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3 Framework

3.1 Setup

Objective Environment. Consider an infinitely repeated decision problem with a
myopic agent.” In each period ¢t = 0, 1,2, ..., the agent chooses an action a, from a finite
set A and then observes a random outcome 7; from ). The set of possible outcomes Y
is either an Fuclidean space or a compact subset of an Euclidean space with at least two
elements. The agent’s action may affect the distribution of the outcome: conditional on
a;, outcome y; is independently drawn according to probability measure Q* (-|a;) € AY.
This true data generating process (henceforth true DGP) remains fixed throughout. At
the end of period ¢, the agent obtains a flow payoff u; == w (as,y;) € R. The function u
is known to the agent. I denote the observable history in the beginning of period t by
he == (ar,y,)._y and the set of all such histories by H; = (A x )". T make the following

assumptions on the true DGP and the payoff function.

Assumption 1. (i) For all a € A, Q* (:|a) is absolutely continuous w.r.t. a common
measure v, and the Radon-Nikodym derivative ¢* (-|a) is positive and continuous; (ii)
Foralla € A, u(a,-) € L' (V,R,Q* (-]a))."?

These assumptions are standard in the literature. Assumption 1(i) means that the
true DGP admits a positive and continuous density. When Y is discrete, ¢* (-|a) is the
probability mass function and v is the counting measure; when ) is a continuum, ¢* (-|a)
is the probability density function and v is the Lebesgue measure. Assumption 1(ii) en-
sures that the agent’s objective expected period-t payoff, @, == [}, u (ar, y) ¢* (ylar) v (dy),

is well-defined and thus there exists an objectively optimal action.

Subjective Models. The decision problem is trivial if the agent knows the true
DGP—she simply plays a myopically optimal action every period. However, the agent
does not know the true DGP and she uses subjective models to guide her decisions.

A model, indexed by 6, is a theory of how actions affect the outcome distribution.
Each model # consists of two components: (1) a parameter set, denoted by 7, and (2)
predictions, which is a collection of data generating processes denoted by Q% : A x QY —
AY. Conditional on action a;, model @ predicts the outcome distribution Q(-|a;,w),
where w can take any value in 7. Parameters are configuration variables specific to the
model. For example, the parameters internal to a linear supply model include only the

slope and the intercept, while the parameters of a more complicated model may include

9T allow the agent to be non-myopic Section 7.2 and show that all main results continue to hold.
0P (Y, R,v) denotes the space of all functions g: Y — R s.t. [ |g(y)|” v (dy) < oo.
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a variety of other factors. A model with a larger parameter set includes a larger number

of DGPs. I restrict attention to models satisfying Assumption 2.

Assumption 2. For all a € A: (i) Q% is a finite subset of some Buclidean space;
(ii) for all w € Q°, Q°(-|a,w) is absolutely continuous w.r.t. measure v, and the
Radon-Nikodym derivative ¢° (-|a,w) is positive and continuous; (iii) for all w € QF,
u(a,-) € L' (Y, R,Q (-la,w)); () for allw € QF, there exists r, € L* (Y, R,v) such

that [In 2] < () a.5-Q7 (o).

Assumption 2(i) requires that the parameter space is finite. Assumptions 2(ii) and
2(iii) are analogous to Assumption 1. They ensure the existence of a density function
and that the expected payoffs predicted by any model are well-defined. Assumption 2(iv)
ensures that the difference between the predictions of any model and the true DGP can
be properly quantified, which also implies that no subjective models rule out events that
occur with positive probability under the true DGP.

Let © denote the universe of all models that satisfy Assumption 2. Since each model
is a finite set of DGPs, we have © C U2, ((Ay)'““')z, where z represents the size of the
parameter set. Model @ is said to be correctly specified if its predictions include the true
DGP, i.e. ¢*(-|a) = ¢’ (‘]a,w),Va € A for some w € QY and misspecified otherwise. I
use 0" to denote the smallest correctly specified model, i.e. the model that solely consists
of the true DGP, and refer to 8* as the true model.

3.2 The Switcher’s Problem

The agent has access to a finite set of models, ©F C O. It is often assumed in the litera-
ture that the decision maker is a dogmatic modeler who uses a single model throughout.
[ call a dogmatic modeler with ©F = {6} a §-modeler. The key departure I take here
is to focus on a switcher who entertains multiple models. A switcher adopts one model
in any period but may switch between multiple models at different times. For the main
analysis, I restrict attention to the two-model case where ©F = {6, 0'}.'* Within a single
period, a f-modeler and a switcher who adopts # this period and shares the same belief
over its parameters operate in an identical way. However, a #-modeler and a switcher
may behave considerably differently across periods, because the decision rule of the
switcher is specific to the current model and can be altered after a change of models.

I now describe a switcher’s behavior in greater detail. I denote the agent’s model
choice in period t by m; € O and assume she starts with 6, i.e. my = 6. We can

summarize a switcher’s problem by a quadruple, S = (6,0, 78, 70, where the first two

" This model switching framework can be extended to allow for three or more models in ©f. I
analyze this extension in Section 7.1.
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elements represent the initial model and the competing model, respectively, and the last
two elements are the priors over the corresponding model’s parameters, 75 € AQY and
7d € AQY. T assume that all priors are full-support.'? I now describe the events in

period t in chronological order.

Model switching. In period 0, the agent adopts 6 and proceeds immediately to choos-
ing an action. In period ¢t > 1, the agent employs a Bayes factor rule to determine
the model choice m;. Fix a constant a > 1 that I call the switching threshold. At the
beginning of each period ¢t > 1, the agent calculates the Bayes factor,

At = 4v’) = Z“’EQG ﬂg(w)ét(e,w) (1)

6(0)  Yeqr o (W)G(H, W)’

where

0(6,0) = [[ ¢ (rlars), @)

and ¢;(0',w'") is defined analogously. The Bayes factor is the ratio of the likelihood of the
data under model ¢ to the likelihood of the data under model 6; further, the likelihood
under a model is the weighted sum of the likelihoods of the data under all DGPs included
in the model, with the weights given by the prior. If # is adopted in the past period,
then the agent makes a switch to ¢ if and only if the Bayes factor exceeds the switching
threshold, A\; > «. If #' is adopted in the past period, the agent makes a switch back
to @ if and only if \; drops below the inverse of the switching threshold, \; < 1/a.'?
If instead 1/a < A < «, the agent does not find the existing evidence adequate for
a model switch. Given a larger «, switching requires stronger evidence. Thus, « is a
measure of switching stickiness. I discuss the switching rule in the next subsection.

Learning. The agent then updates her belief over the parameters of both models using
the full history. I recursively define two belief processes, ¢ = B?(a,_1,vy,-1, 7% ) and
7 = B (ay_1, i1, 7" ), where B? : Ax Y x AQ? — AQY is the Bayesian operator for
model § and B? is the Bayesian operator for #’. We can equivalently write the Bayes

factor defined in (1) in terms of the posteriors,

A= A1

Zw’EQg' Wtelq (W/) q9, (yt71|at717 w’) (3)
Zwem Wf—l (W> qa (yt71|at71, w) ‘

12This is without loss of generality. Using model § with a non-full-support prior is equivalent to
using model @’ with the smaller parameter space Q% = supp(7§) and a full-support prior.
13The symmetry in the switching threshold is not important for the main results.
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This expression has an intuitive interpretation: the first term on the right-hand side
compares how well the models explain the data generated before the last period, and
the second term compares how well they explain the most recent observation when the

parameters are estimated using the past data.

Actions. The agent chooses an action according to a fixed pure policy that is optimal
under the current model m;. The policy under #, denoted by f? : AQ? — A, is a
selection from the correspondence AY : AQ? = A that returns all myopically optimal

actions at a given belief. Formally, for any belief ¢ € AQ?,

A9 71'9 = arg max 7T9w ula 9 a,w )V .
0 (%) = argmax 3" 7 >/y (a, 9)d" (yla, ) (dy) (4)

acA Qf

Analogously, the policy under ¢, denoted by f?, is a selection from Af,;.

Given @ and @', the agent’s model choice either eventually converges to one of the two
models or oscillates forever. We say that model 6 persists if the agent eventually stops

switching and settles down with model 6 with positive probability.'*

Definition 1. Model 0 persist against ' at priors ) and Wg' if, given the switcher’s
problem S = (0,0, 7§, 7 ), the model choice m, eventually equals @ with positive prob-
ability, i.e. there exists T > 0 such that with positive probability, m; = 6 for all ¢ > T.

The interpretation of persistence is as follows. If # does not persist against ¢, the
competing model ¢ will be adopted by the agent infinitely many times almost surely.
This implies that the long-term beliefs and behavior of the switcher can be starkly
different from the predictions of an analyst who only knows the initial model 6. If an
underlying bias gives rise to a model that does not persist, we expect it to be non-
stable. By contrast, if 6 persists against 6, then with positive probability, the switcher
resembles a f-modeler in the long term, allowing us to use tools from the literature
on misspecified learning to characterize her behavior. This also implies that we could
expect to observe the stable existence of the underlying bias. I discuss alternative ways
of defining persistence in Section 7.

Note that persistence is prior-sensitive—in principle, a model could persist against
some competing model at some priors but not others. The prior potentially affects
persistence in two ways. First, the prior plays a direct part in the computation of
the Bayes factor. Second, the prior affects the agent’s behavior and thus endogenously
affects the outcome realizations and how well models fit the data. Therefore, we are
interested in not only which models can persist but also how their persistence depends

on the prior.

11 construct the underlying probability space in Appendix A.
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3.3 Discussion

I now briefly comment on the model switching rule before proceeding to the analysis.

The discussion on other important assumptions is deferred to Section 7.

Sticky switching. A switch only occurs when an alternative model fits sufficiently
better, as captured by the assumption that a > 1. Switching stickiness is well observed
in reality and can stem from a variety of causes, such as conservatism, concerns about
overreaction to noisy observations, or mental and physical costs associated with model
switching. For example, universities base their promotion decisions on models of faculty
performance that heavily rely on key statistics such as the rankings of the journals. While
such an evaluation system can be deeply flawed, implementing a new system is highly
costly, and thus a model switch only occurs when a meta-analysis of other potential
evaluation systems points to a clear winner. In the statistics literature on Bayesian
model selection, Kass and Raftery (1995) recommend using a threshold of 20 as the
requirement of “strong evidence” in favor of the competing model. Sticky switching is
important to the persistence of models. When a = 1, persistence is significantly harder

to achieve since switching occurs too easily.®

Bayes factor rule. The Bayes factor rule is a common model selection criterion in
Bayesian statistics. It is a natural choice in this environment for the following reasons.
First, it is well known from the statistics literature that the Bayes factor automatically
includes a penalty for including too much structure into the model and helps prevent
overfitting (Kass and Raftery, 1995). If model 6 has a large parameter space and a
diffuse prior, then each DGP in the model is assigned minimal weight, thinning out
the likelihood 1;(6).'® This is consistent with the empirical observation that people in
general favor simple models. As shown in the next section, this feature is the main
driving force behind the necessity of high prior tightness for global robustness. Second,
the Bayes factor rule is flexible in that it could be easily formulated for any model and
any DGPs, without imposing assumptions about the underlying parametric structure.!”
Finally, the Bayesian factor has a strong Bayesian flavor, so the agent maintains some

form of consistency in belief updating and model switching.

15T analyze this case in Corollary 2.

16The use of the prior in the calculation of the Bayes factor is crucial. Suppose, for example,
we evaluate the likelihood of the data under model 6 using the final posterior for all periods, i.e.
L(0) =3 cqe m—1(w)l,(0,w), then the likelihood is less sensitive to the prior and the punishment
on complexity vanishes over time if the posterior converges. If we evaluate the likelihood using the
maximum likelihood estimates, i.e. () = Ht;:lo 1;(60,&), where &, maximizes [;(f,w) among all
w € O then the likelihood ratio is completely independent from the prior. In this case, the likelihood
under a larger model is always weakly higher than the likelihood under a nested smaller model.

17Common alternative rules in statistics such as the BIC and the AIC are shown to approximate the
Bayes factor under certain assumptions about the parametric family and the prior.
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4 Global and Local Robustness

This section defines and provides a full characterization of global and local robustness.
I characterize which models can be globally or locally robust for at least one prior in
Section 4.2. In Section 4.3, I demonstrate a new technical challenge that arises due to the
interaction between within-model learning and model switching. Finally, I characterize

global and local robustness at a fixed prior in Section 4.4.

4.1 Definition

Persistence is defined relative to a competing model and a given set of priors. But
which competing models would arise and what priors they would be assigned may not
be predictable. This motivates a robustness approach. In this section, I consider two
robustness notions: global robustness requires persistence against both local pertur-
bations and paradigm shifts, while local robustness requires persistence against local
perturbations. Global robustness is more applicable if the agent has a deep understand-
ing of the environment—coming up with novel competing models requires knowledge and
imagination—or if she works in an innovation-friendly culture (such as the technology
industry). On the contrary, local robustness is more applicable when the environment
is complicated or the agent is conservative.

Formally, if model 6 is globally robust, then provided a proper prior, it persists no
matter what alternative model it is compared against and what prior is assigned to the
alternative model. Conversely, if 8 is not globally robust at any full-support prior, one
can find a competing model associated with some prior that replaces 6 infinitely often

almost surely.

Definition 2 (Global robustness). Model 8 € O is globally robust at prior 7§ if 6 persists

against every competing model 6’ € © at priors 7§ and 7§ for every 7§ € AQ?".

Next, to define local robustness, we first need to properly quantify the distance be-
tween two arbitrary models 6 and 6’. Since every model consists of a collection of
data-generating processes, a natural approach is to measure the distance between the
corresponding sets of DGPs using the Prokhorov metric dp and the Hausdorff metric

dy.'%' To begin with, denote the DGP to which model # and parameter w correspond

18The Prokhorov metric measures the distance between any two probability distributions on the same
metric space. For any two probability measures p and u' over ), the Prokhorov distance is given by
dp(p, i) = inf {e > 0lp (V) < p/ (B (Y))+eand ¢/ (V) < pu(Be (Y))+e€forall Y C Y}. The results
in this paper also hold for alternative metrics such as Kullback-Leibler divergence or total variation.

19The Hausdorff metric measures how far two subsets of the same metric space are from each other.
For any two sets X and Z, their Hausdorff distance is di (X, Z) = max{sup,c, d(x, Z),sup,c, d(X, 2)}.
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by Q%. The distance between any two DGPs Q% and Q% is the maximum Prokhorov

distance between the outcome distributions across all actions,
d(Q", Q") = maxdp(Qg¥, Q). (5)
The distance between model 8 and ¢’ is then given by the Hausdorff metric,
4(6,0') = dir ({1Q" boenn {Q" Yurear ) - (6)
This metric allows us to define an e-neighborhood of 6,
N (0)={0€O:d(0,0) <e}. (7)

In order for the models to have similar initial predictions, the notion of local robustness
also restricts the distance between the associated priors. Note that prior 7{ and prior
Wg/ are defined on potentially different parameter spaces, but each of them corresponds
to a belief over the set of all DGPs. Let this belief mapping be T'? : AQ? — A(AY)A.

An e-neighborhood of prior 7§ within the set of possible priors for ¢’ is given by
N (78:0,0") = {ﬂ'gl e AQY :dp (Fe(w(’),Fel(we/D < E} . (8)
Now we are ready to state the definition of local robustness.

Definition 3 (Local robustness). Model 6 € © is locally robust at prior w§ if there exists
¢ > 0 such that model § persists against every competing model ¢ € N,(0) at priors 7}

and 7§ for every 7§ € N.(7§;0,0").

Local robustness requires that there exists some positive € such that a model persists
against nearby models at nearby priors within the relevant e-neighborhoods. Hence, if
model @ is locally robust, it persists as long as the switcher only considers sufficiently
close perturbations. By contrast, if 6 is not locally robust, then there is no chance that

6 would be adopted forever even if the agent only considers small changes.

4.2 Robustness at Some Prior

I first characterize models that are locally or globally robust for at least one full-support
prior. This characterization is useful because it directly speaks to the question of which
models can be robust—failing to be robust at some full-support prior implies non-
robustness under every initial condition. Since all priors are assumed to be full-support,

I sometimes drop this adjective for convenience.
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It is instructive to start our analysis with a special case: which models can persist
against a correctly specified model? It is a well known fact that under a correctly
specified model, a learner assigns probability 1 to the true outcome distribution in the
limit (Easley and Kiefer, 1988). It follows that such a model perfectly matches the
data in the long term, and thus any model that persists in its presence must also have
perfect prediction accuracy in the limit. Since outcomes are endogenously generated by
actions, this suggests that the agent—potentially after a lot of back-and-forth switching

and belief updating—ends up playing a self-confirming equilibrium.

Definition 4. A strategy o € AA is a self-confirming equilibrium (SCE) under model
0 if there exists a supporting belief 7 € AQ? such that the following conditions hold.

(1) Optimality: o is myopically optimal against 7, i.e. o € AA? (7).

(2) Consistency: 7 is consistent at ¢ in that ¢°(-|a,w) = ¢*(:]a) for all a € supp(o)
and all w € supp(m).

In such an equilibrium, the agent plays actions that are myopically optimal given
a consistent supporting belief such that the model prediction fully coincides with the
objective outcome distribution. Note that a SCE may well be inefficient—while consis-
tency implies correct predictions about the payoff obtained in equilibrium, the model
could have completely wrong predictions about the payoffs off path.

But persistence against a correct model implies more than the existence of a SCE—
the agent should, with positive probability, end up playing only the equilibrium actions
under model 6. If non-SCE actions are played infinitely often, the Bayes factor would still
diverge to infinity and result in an abandonment of model 8. Note that on paths where 6
is adopted forever, a switcher eventually behaves no differently than a #-modeler. Thus,
a necessary condition is that a #-modeler eventually only plays the equilibrium actions
with positive probability. I refer to this stability notion as p-absorbingness, where “p”
means that the equilibrium is absorbing with positive probability. Since a f-modeler’s
problem is independent from the model switching process, we can further characterize

p-absorbingness with conditions based on the primitives of the model.

Definition 5. Strategy ¢ € AA is p-absorbing under @ if there exists a full-support
prior 7§ and some positive integer T such that, with positive probability, a #-modeler

only plays actions in supp (o) after period 7.

P-absorbingness differs from existing stability notions of self-confirming equilibria in
the literature. In particular, it does not imply that the #-modeler’s or the switcher’s

action sequence converges to a single action in the support of ¢ or her action frequency
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converges to 0.?Y Rather, it allows for non-convergent behavior within the support of o,
but rules out the scenario where the modeler almost surely plays actions outside the sup-
port of o infinitely often.?! Although p-absorbingness is a relatively weak requirement,

2 Note that while p-absorbingness

not all self-confirming equilibria are p-absorbing.?
implies the existence of some full-support prior that leads to the SCE being played by
a f-modeler, in principle it is not necessary that the switcher also starts with such a

prior.?? I conclude our analysis of a correctly specified competing model with Lemma, 1.

Lemma 1. If model 0 persists against a correctly specified model §' at some priors 4

and 7r8/, then there exists a p-absorbing SCE under 0.

On its face, this lemma provides only a necessary condition for global robustness. On
one hand, the condition in Lemma 1 appears too strong for local robustness because
this notion only requires persistence against local perturbations and any local pertur-
bation of any misspecified model is necessarily misspecified. On the other hand, it is
unclear whether the existence of a p-absorbing SCE would be sufficient for global ro-
bustness, even if the agent can start from any arbitrary full-support prior. Critically,
p-absorbingness only ensures that a f-modeler eventually plays the SCE with positive
probability, but it remains to be shown that our agent can also arrive at the equilibrium
with positive probability when she has access to multiple models—the presence of the
second model may interfere with the learning process under the first model. Perhaps
surprisingly, as I show in Theorem 1, the existence of a p-absorbing SCE is both nec-
essary for local robustness and sufficient for global robustness, which equates the two

robustness notions provided flexibility in the prior.
Theorem 1. The following statements are equivalent:
(i) Model 0 is locally robust for at least one full-support prior.

(i1) Model 0 is globally robust for at least one full-support prior.

20For example, p-absorbingness is weaker than the stability notion proposed by Fudenberg et al.
(2021). By their definition, a pure equilibrium a* under 6 is stable if for every s € (0, 1), there exists a
belief 7 € AQY such that for any prior 7§ sufficiently close to 7, the dogmatic modeler’s action sequence
a¢ converges to a* with probability larger than . They do not define a stability notion for a mixed
equilibrium.

21Tndeed, a dogmatic modeler’s action may never converge even when she eventually only plays the
actions in the support of a p-absorbing SCE (see Example 5 in Appendix C).

22If there exists an action that is outside the support of the SCE but optimal against the equilibrium
belief, then playing that action can drive the agent away from the SCE (see Example 6 in Appendix
).
23This is because a switcher may go through a number of switches before she eventually settles down
with a model, and those switches may happen to push her belief into a trajectory to the SCE even when
her prior is not on the trajectory.
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(iii) There exists a p-absorbing SCE under model 6.

First, Theorem 1 provides a microfoundation for the persistence of certain types of
misspecified models. A model can persist against any arbitrary competing model as long
as it leads to a p-absorbing SCE at which the model predictions are indistinguishable
from the truth. It is worth noting that Theorem 1 does not depend on switching thresh-
old «v (as long as @ > 1), meaning that the sets of models that can be locally and globally
robust are the same for any level of switching stickiness. Thus, the switching threshold
may only affect model robustness through changing the set of supporting priors.

Second, the equivalence between (i) and (ii) offers a new perspective for understand-
ing local and global robustness. If a model fails to be globally robust, the switcher
need not go far to find an attractive alternative—models that do not persist against
paradigm shifts are also vulnerable to local changes. The intuition lying behind this
result is quite simple. Although the agent is restricted to contemplate only local pertur-
bations, such perturbations are unconstrained and can be made towards the direction of
higher asymptotic accuracy. Specifically, for any model 6, we could construct a neighbor
competing model ¢ within its e-neighborhood such that ¢ outperforms 6 consistently
unless # induces a self-confirming equilibrium. To do this, we simply take the predic-
tions of §' to be a convex combination between the predictions of 6 and the true DGP
for every action in A. Since the Kullback-Leibler (KL henceforth) divergence between
any two probability distributions is convex, the mixture model 8 yields a strictly lower
KL divergence than model # unless the agent plays a self-confirming equilibrium under
model .24

Third, comparing Theorem 1 with Lemma 1, we learn that the demanding notion
of global robustness amounts to the requirement that € persists against one correctly
specified model at some prior. Provided that 6 can persist against a competing model
that assigns a tiny probability to the true DGP, it also has the potential to persist against
the true model, or any model with arbitrarily complex parameter space. Conversely,
models that fail to be globally robust do not persist in the long term as long as the agent
considers any correctly specified model. An immediate corollary is that any correctly
specified model is globally robust since a model must persist against itself.?’

More importantly, misspecified models can be globally or locally robust as well. Corol-

lary 1 provides a sufficient condition for the existence of a p-absorbing SCE, which can

24The Kullback-Leibler divergence of a density ¢ from another density ¢’ is given by Dxr (¢ || ¢') =
fyqln (¢/¢") v (dy). The KL divergence is an asymmetric non-negative distance measure between g
and ¢’, which is minimized to zero if and only if ¢ and ¢’ coincide almost everywhere. It is convex
in the following sense: for any two pairs of densities (q1,¢2) and (¢}, ¢5) and any v € [0,1], we have
Dict, (Aay + (1— N)as [| A + (1 - Nas) < ADxcs, (a1 [l a}) + (1 — NDir. (a2 | ab).

25Notice that the Bayes factor between one model and itself is always 1.
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be easily verified by computing the set of all SCEs induced by the model. Say that a
self-confirming equilibrium o is quasi-strict if there exists a supporting belief 7 such that
any action outside the support of ¢ is strictly suboptimal given 7, i.e. supp (o) = A% (7),
then it can be shown that any quasi-strict SCE is p-absorbing.?¢

Corollary 1. Model 0 is locally or globally robust for at least one prior if 6 is correctly

specified or there exists a quasi-strict SCE under 0.

Quasi-strictness ensures that at any belief sufficiently close to the equilibrium sup-
porting belief, it is strictly optimal to play the actions prescribed by the equilibrium.
Moreover, since the equilibrium is self-confirming, the -modeler’s belief stays within a
small neighborhood of the supporting belief with positive probability. Taken together,
this implies that starting from a prior sufficiently close to the equilibrium supporting
belief, the #-modeler plays the SCE forever with positive probability, and thus the SCE

is p-absorbing.

4.3 Self-Defeating Models and Traps

The characterization in Theorem 1 is clean and intuitive. From a high level, p-absorbingness
ensures that the SCE is reachable from some full-support prior, and the self-confirming
property ensures that model # makes perfect predictions in the limit and thus persists
against any competing model. However, this rough intuition leaves out new interesting
challenges that arise due to the interaction between within-model learning and model
switching. Such challenges are inherent to the multiple-model learning framework and
thus may be of independent interest to future research pursuits on problems other than
persistence and robustness.

In general, for a dogmatic modeler, both his behavior and beliefs are endogenous
and may mutually influence each other; for a switcher, in additional to behavior and
beliefs within each model, the model choice is also endogenous and all three endogenous
objects can influence one another. This interaction can cause problems that prevent a
model from being locally or globally robust at a given prior even if the model admits a
p-absorbing SCE. In particular, the outcome realizations that lead a dogmatic modeler
to the SCE may in fact trigger a switch away from model 6, rendering its adoption to be

self-defeating. 1 illustrate this issue in Example 1. For simplicity, in Example 1 I take

26Fudenberg et al. (2022) show that quasi-strictness can play a different role in facilitating the
persistence of a misspecified model. In an evolutionary framework, they find that a model that admits
a quasi-strict Berk-Nash equilibrium can resist local mutations provided that they induce weakly worse-
performing actions. This is because quasi-strictness ensures that local mutants do not play actions
outside the support of the equilibrium and thus no new evidence is generated after mutation.
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¢ (Aa,w) | ! o ¢ (la,w) | o
al 0.5 0.3 a' 0.5
a? 04 04 a?

Table 2: Initial model # and competing model #’ in Example 1.

the competing model to be the true model, but a similar phenomenon can occur with a

competing model arbitrarily close to the initial model.

Example 1 (Self-defeating Models). In each period, an agent chooses from two tasks
a; € {a',a?} and observes the outcome/payoff of the chosen task y; € {0,1}, where 0
represents failure and 1 represents success. The true DGP prescribes that successes and
failures happen with equal probability 0.5 for either task. Hence, the agent would be
indifferent between the tasks if the true DGP was known.

The agent holds a subjective model # that presumes the success rate may depend on
both the task type and his luck w € QY = {w!, w?}, where w! represents good luck and
wsy represents bad luck (see Table 2). Under model 6, the agent believes Task 1 is risky
and success occurs more often if he has good luck, while Task 2 is safe and its outcome
is independent from his luck. Besides, the agent is overall pessimistic under € because
the assumed success rate is always (weakly) lower than its true level. The agent believes
that his luck is fixed and has a uniform prior over his luck, i.e. 7§(w;) = 0.5. His policy
under 6 prescribes Task 1 iff good luck is more likely than bad luck, i.e. 7¢(w;) > 0.5.%7
In addition, the agent entertains the competing model 8* that correctly predicts the true
success rate. Under model 0*, the agent is indifferent and always chooses Task 1 (see
Table 2). We consider the case where his switching threshold is given by o = 1.1.

Choosing Task 1 is a strict self-confirming equilibrium under 6, supported by a de-
generate belief at w!. To see why, note that the risky task is strictly optimal when the
agent believes his has good luck; meanwhile, the superstitious belief of good luck offsets
the overall pessimism and thus the model correctly predicts the success rate.

However, it turns out that model 6 does not persist against model 6* at the given
uniform prior, because the outcome realization that leads to choosing the risky task a!
also triggers a model switch. As illustrated in Figure 1, if the first realized outcome is
a failure, the agent believes that he is more likely to have bad luck and thus switches
his task choice to the safe task a? (Scenario 1); if the first realized outcome is a success,
the agent switches his model choice to the more optimistic model #* in the next period
(Scenario 2). In Scenario 1, the safe task choice causes the agent to stop updating on his

luck. As a result, the agent never switches back to the risky task a! as long as he remains

2"The uniform prior is assumed for simple exposition. The mechanism in this example does not
depend on the fact that the agent starts off being exactly indifferent between the tasks.
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Scenario 1
model m; =6
W action a; = a?

belief 7§ = (%, %) Yo = 0
model mg =
action ay = a' % .o B 5 3
7 7 belief 7] = (§> g)
Bayes factor Ay = 2 > « -
Scenario 2

model m; = 6*

action a; = a'

Figure 1: Scenario analysis in Example 1.

under model €. Since 6 is incorrectly pessimistic when a? is chosen, the agent eventually
switches to the correct model 6* and enters Scenario 2. Once Scenario 2 occurs, the
agent switches back to the overall pessimistic model # only under the circumstance that
he observes more failures than successes. But if so, the resulted posterior 7¥ assigns
higher probability to bad luck than good luck, which again induces the agent to choose
the safe task a2, bringing the agent back to Scenario 1. Eventually, the agent must
abandon model 0 and adopt the competing model 6* forever. Therefore, 6 does not

persist against #* under the given priors.

What are the root causes of the self-defeating result in Example 17 First, the agent’s
model choice and his belief on luck are tightly correlated given the particular structure
of the models in Example 1. In order for the agent to choose the risky task, he must
believe in good luck more than bad luck, but the successes needed to induce this belief
inevitably lead to a switch to the more optimistic competing model. Second, the agent’s
the task choice and model choice are too sensitive to the early outcome realizations.
Since the agent’s prior 7§ is relatively far away from the SCE supporting belief and
the switching threshold « is relatively low, a single observation is powerful enough to
sway the agent’s task choice or the model choice. Last but not least, the safe choice
constitutes an absorbing trap in model # because it causes the agent to stop updating
his belief within #. Indeed, the agent can never choose the risky option under model
again once the agent enters the trap.

The above diagnosis points out two different directions for breaking the self-defeating
result. First, the agent may not fall into the trap if he starts with a prior sufficiently

close to the SCE supporting belief. Specifically, if the agent starts out assigning more

23



probability to good luck, then his task choice will be less sensitive to early failures;
meanwhile, his initial model becomes overall less pessimistic and thus his model choice
will be less sensitive to early successes. The proof of Theorem 1 uses precisely this idea
to show that there exists a prior 7 sufficiently close to the SCE supporting belief, so
that the self-defeating behavior does not arise with probability 1.

The second direction is to remove any traps from the model while holding the prior
fixed. If model @ predicts that the success rate still depends on the agent’s luck even
slightly for the safe task, then the agent does not stop updating on his luck upon choosing
the safe task. If so, there is no longer a trap that locks in the agent’s task choice.
Consequently, model 8 is not self-defeating—we can always construct a finite sequence
of outcomes to make the agent eventually confident in model 6 as well as attach high
probability to having good luck (this is non-trivial and requires proof). To rule out traps
of the sort described in Example 1, we can assume the model is identifiable as defined

below.

Definition 6. Model 6 is identifiable if the predictions of different parameters in 6 are
different for all actions, i.e. ¢°(-|a,w) # ¢°(-|a,w’) for all distinct w,w’ € QF and all

ac A.

It turns out non-identifiability is not the only cause of traps. The other type of traps
are more technical and arise when the p-absorbing SCE under model 8 is not quasi-strict.
In this case, there exists some action that is optimal given the equilibrium supporting
belief but not self-confirming. Under certain policies f?, these actions can also act like
traps—once they are played, the agent can never go back to play the SCE actions under
the same model.Definition 7 collects the two no-trap conditions. In the next subsection,

I characterize local and global robustness at a fixed prior under the no-trap conditions.

Definition 7. Model 6 has no traps if 6 is identifiable and all p-absorbing SCEs (if

exists) under @ are quasi-strict.

4.4 Robustness at a Fixed Prior

Theorem 1 characterizes which models can be locally and globally robust based on their
prediction accuracy at the induced equilibrium, but it remains silent about under which
priors these models are locally or globally robust. The analysis about self-defeating
models in the preceding subsection suggests that there is no good answer to this problem
when there are traps in the model, except that we know such priors do exist. When
there are no traps, a natural conjecture is that a model that admits a p-absorbing SCE

is locally and globally robust at all priors. In this subsection, I show that while this
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¢ (Uaw) | o' T ¢ (la,w) | w

a \0.5 0.3 a \0.5 0.3+¢ a \0.5

*

Table 3: Initial model # and competing model ¢’ in Example 2.

conjecture is correct for local robustness, global robustness requires the prior to be tight
and concentrated around the p-absorbing SCEs.

Let us start by analyzing the simplest case where the outcomes are exogenously
generated, or equivalently, A contains a single action a. As illustrated by Example 2,
in this special case, a model is locally robust at any prior if and only if its predictions
contain the true outcome distribution; by contrast, a model is globally robust at a given
prior if and only if the prior assigns probability weakly higher than 1/a to the true

outcome distribution.

Example 2 (Exogenous data). Suppose the agent works on a single task A = {a} and
observes the failure/success of the task, J = {0,1}. As in Example 1, the true DGP
prescribes that the success rate is 0.5. The agent holds a subjective model 8, under
which he presumes the success rate depends on his luck w € Qf = {w!, w?}, where w!
represents good luck and w? represents bad luck (see Table 2). Note that model 6 is
correctly specified because it predicts the true success rate of 0.5 when the agent has
good luck. Corollary 1 immediately implies that model 6 is both locally and globally
robust for at least one prior.

Model 6 is locally robust at all full-support priors. To see why, let us assume the
agent entertains a nearby competing model 6’ that predicts a success rate of 0.3 + ¢
under bad luck. When € > 0 is small, model ¢’ is slightly more optimistic than model 6.

Since there is a single action, it is straightforward to calculate the Bayes factor,

G0 wl (wh)0.5" + 7f (w?) (0.3 + €)% (0.7 — e)F
0(0) 70 (w)0.5¢ + 7w (w?)0.35:0.7F: ’

where S; and F; are the number of successes and failures observed before period t and
Si+F; = t. Asthe agent accumulates more evidence, the likelihood of bad luck eventually
vanishes as compared that of good luck in both models. In the limit, the Bayes factor
is completely determined by the ratio of the prior odds of good luck, 7§ (w')/7d(w"),
which is close to 1 when the priors are sufficiently close and thus is bounded above by
a > 1. Therefore, model 0 persists against model §’. This argument can be generalized
to other nearby competing models.

By contrast, model 6 is globally robust at a given prior if and only if the prior assigns

probability weakly higher than 1/a to good luck, ie. 7w§(w!) > 1/a. To illustrate,
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suppose the agent entertains the true DGP 6* as the competing model. The Bayes

factor is given by

07 0.5

A = = .
PT00) T af(wh)0.5t 4 1 (w?)0.3%0.7F

When 79(w!) > 1/a, the Bayes factor )\ is bounded above by « for any history, so the
agent never switches to the competing model. Intuitively, this is because the explanatory
power of model 6 is at least 1/a-times as large as the true model but a switch is only
triggered when the Bayes factor is strictly larger than a.. On the other hand, if 7§ (w?) <
1/a, the agent must abandon model 6 at some point. Since the likelihood of bad luck
eventually vanishes, the Bayes factor \; converges to 1/7§(w!), which is strictly larger

than «.

The key driving force behind Example 2 is that the Bayes factor rule acts like the
Occam’s Razor—it favors parsimonious models with tight priors and punishes complex
models with diffuse priors. When the agent compares a model with high asymptotic
accuracy and its local perturbation, their priors are similarly tight around similar DGPs.
Sticky switching (o > 1) then implies that the agent remains under the same model with
positive probability. However, model 6 with a diffuse prior can fit significantly worse
than a model with a prior concentrated around the true DGP. In this case, a forever
switch to the competing model is inevitable. Notably, as switching becomes stickier («
grows larger), the agent’s tolerance for diffuse priors also increases.

When outcomes are endogenously generated by actions, an analogous condition of
prior tightness is that the prior assigns probability weakly higher than 1/« to the pa-
rameters that are in the support of a SCE supporting belief. But the validity of this
generalization is a priori unclear because of two complications. First, contrasting the
case with exogenous data, here the parameter(s) in the support of a SCE supporting
belief may not predict the true outcome distribution when non-SCE actions are being
played. So we cannot directly bound the Bayes factor from above using the prior ratio
as in Example 2 for all action histories. Second, when there are multiple p-absorbing
SCEs, the supports of different SCE supporting beliefs may not overlap. Hence, it is
unclear whether the prior should be concentrated around one of the supporting beliefs
or the whole set of the supporting beliefs.

Despite the complications, I show in Theorem 2 that when model 6 has no traps, prior
tightness is sufficient and necessary for global robustness at a given prior. To state the
result, I denote by C? the set of parameters in # that support at least one p-absorbing

SCE and refer to C? as the set of consistent parameters in 0. Formally, for each w € C?,
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there exists a p-absorbing SCE under § with supporting belief §,,.%* Notice that model
6 admits a p-absorbing SCE if and only if C? is not empty.

Theorem 2. Suppose model 6 has no traps, then the following are true:

(i) Model 0 is locally robust at all priors if and only if C? # (.

(ii) Model 6 is globally robust at prior 75 if and only if C° # 0 and w3(C?%) > 1/a.
(iii) Model 0 is globally robust at all priors if and only if C% = QY.

While Theorem 1 unifies local and global robustness in terms of which models can
be robust, Theorem 2 clarifies the distinction between these notions in terms of when
these models are robust—TIlocal robustness is prior-free, but global robustness is prior-
sensitive. Theorem 2 provides an exact quantification of how concentrated the prior
must be on C? in order to support global robustness. In particular, the tightness of
the prior (measured by the probability assigned to () multiplied by the switching
stickiness (measured by the threshold «) must be weakly larger than 1. Therefore, if
model 6 admits a p-absorbing SCE, then for any fixed full-support prior, # is globally
robust as long as switching is sufficiently sticky (o sufficiently high). Alternatively, if
we fix «a, global robustness holds at all priors if and only if C? = Qf. Conversely, when
C% # Q9 global robustness fails at any given full-support prior if switching is sufficiently
easy (« sufficiently close to 1).

Taken together, Theorems 1 and 2 draw an interesting comparison between misspec-
ified models and correctly specified models in terms of their robustness properties. On
one hand, all correctly specified models are locally robust at all priors and globally ro-
bust at some prior since they have high asymptotic accuracy, which is achieved only by
a subset of misspecified models. On the other hand, some misspecified models can be
globally robust at more priors if they have a simple structure or induce a large set of
SCEs.?” T illustrate this interesting wedge in Application 6.1.

For completeness, I also consider the case where switching is perfectly non-sticky and
a is exactly 1. In this extreme case, the existence of a p-absorbing SCE is no longer

sufficient for either local robustness or global robustness for at least one full-support

28Note that when 6 is identifiable, no parameters predict the same outcome distribution, and thus
the supporting belief of any SCE must be pure.

29Under identifiability, misspecified models can easily satisfy C? = QF if there exist multiple p-
absorbing SCEs, but the only correctly specified model that satisfies this condition is the true model
0*. If 6 is correctly specified, then there exists w* € Qf such that ¢?(-|a,w*) = ¢*(-|a) for all a € A.
Identifiability then implies that for any w € QY and w # w*, we must have ¢°(-|a,w) # ¢*(-|a) for all

a € A. Therefore, at most one parameter, namely w*, can support a SCE, and thus Qf = C? implies
QF = {w*}.
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prior. Corollary 2 provides an alternative characterization in place of Theorems 1 and
2.

Corollary 2. Suppose model 0 has no traps and o = 1, then model 6 is locally or globally
robust if and only if C? = QF.

Corollary 2 has three implications. First, the set of models that can be locally robust
or globally robust for at least one prior stays unchanged when the threshold « is strictly
larger than 1 but shrinks discontinuously at a = 1. Second, the gap between local and
global robustness has closed when switching is perfectly non-sticky, since both require the
prior to be fully concentrated around p-absorbing SCEs. Finally, this result, combined
with Theorem 2, uncovers the equivalence between two strong notions of robustness—
global robustness when switching is non-sticky and global robustness at all priors—both

of them characterized by a simple condition, C? = QF.

5 Constrained Local Robustness

This section relaxes the requirement of local robustness by restricting the agent to nearby
competing models within a constrained family. The motivation for the constraint comes
from the observation that decision makers often do not abandon their basic framework of
assumptions and principals when coming up with nearby competing theories.?" Rather,
they maintain fundamental assumptions and consider structured and directed changes
to their original model. With this constraint, I show that a model can be locally robust
even if it does not give rise to a p-absorbing self-confirming equilibrium. Rather, the
model only needs to induce a p-absorbing Berk-Nash equilibrium that satisfies a local
dominance property. As the family of models grows larger, however, the local dominance
property becomes more demanding and eventually morphs into the self-confirming prop-

erty.

5.1 Definition

I define a parametric family of models with a meta-model. A meta-model @ consists of a
profile of data-generating processes, {q (-|a,w)},c 4 ,eqs» Where g is uniformly continuous
over the meta-parameter set QP for all @ € A. The set Q% can be any subset of a
Euclidean space without the restriction of being finite or bounded. The meta-model 8

then generates an affiliated family of models ©°.

30For example, Kuhn argues that science experiences alternating phases of normal science and rev-
olutions. While revolutions entail paradigm shifts, he argues that “normal science, ..., often suppresses
fundamental novelties because they are necessarily subversive of its basic commitments” (Kuhn, 1996,

p. 5).
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Definition 8. The -family of models is the set ©? C © such that
e’ = {0c0:¢(|a,w)=q(|a,w) forallwe Qf C Qf and all a € A} 9)

Two models # and @’ belong to the same family generated by @ if they share the same
mapping from parameters to DGPs as @ but differ in their parameter sets. We can con-
veniently measure the distance between any 6 and 6’ by the Hausdorff distance between

their parameter sets, QO and Q7. T define an e-neighborhood of # as follows,

N () = {9’ c e dy (99,99’) < e} . (10)

Note that this definition of nearby models is conceptually different from our previous
definition based on non-parametric distance measures over sets of DGPs (see (7)). To
capture the idea that the agent contemplates models with similar underlying structures, a
proper metric over models should measure not only the distance in model predictions but
also the distance between the parameter values. Two parameters w and ' in the meta-
parameter set 0P can be distant from each other but still correspond to extremely similar
or even identical predictions. However, if w and w’ are close in Qé, it follows from the
continuity of ¢ that they must predict similar data-generating processes. The distance
measure over priors is also significantly simpler than that in (8). The e-neighborhood of
any m € AQY is given by

No(7) = {n' € AQ? : dp(m,7') < €} (11)

A model is locally robust within the -family if it persists against every nearby model

within that family under nearby priors. Its formal definition mirrors Definition 3.

Definition 9 (Constrained local robustness). Model 6§ € @ is G-constrained locally
robust at prior 7 if there exists ¢ > 0 such that  persists against every competing

model ¢ € N? (§) at priors 7 and 7 for every nf e Nf(xf).

It is worth noting that constrained local robustness is a flexible concept. One might
think that since all models within the same family differ only in their parameter sets, the
agent is limited to expanding, downsizing, or replacing the elements of the parameter set
of her initial model, but this is not entirely true. By specifying different meta-models, we
allow the agent to access vastly different sets of competing models. In addition, we can
modify the parameter set of model 6 to include additional dimensions without altering
the predictions of model 6. The addition of these new dimensions allows the agent to re-

assess the validity of certain implicit assumptions and perspectives built into her initial
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model when considering competing models. Example 3 illustrates the flexibility of the

approach.

Example 3 (Portfolio choice). Consider an investor who chooses a portfolio from N
stocks. Her action a; = (a},...,a) € A = {0,1}" specifies whether to invest in each
of the N stocks. At the end of each period, she obtains a CARA utility of u (a¢,y;) =
1 — e Zamiaivi , where y;' is the return of stock n. The true return of stock n is y;' =
r™ 4+ &', where 7" is the average return of stock n and &' is the stock-specific random
noise. Moreover, & = ({}1, &N ) follows a multivariate normal distribution with zero
mean and a covariance matrix ¥ = (v*7).

The investor’s initial model 6 is very simple. She presumes that every stock has
identically distributed and uncorrelated returns y;' = r + £, where r is the average
return of all stocks and & ~ N (0, v - I,) for some constant v > 0. She conducts Bayesian
updating to learn about r and v and has a finite parameter space QY = Qf x Qf C R2.

Is the investor’s model persistent? The answer to this question may depend on which
simplifying assumption(s) she is willing to drop when considering competing models.
For example, the investor may maintain her assumption of i.i.d. returns and investigate
if the market is more volatile than what she initially assumes. In this case, we can
specify the meta-model @ to have an expanded parameter space along the dimension of
the variance v, i.e. Qf = Q% x R,. Alternatively, the investor may question the validity
of her assumption of identically distributed returns while maintaining the assumption
that returns are uncorrelated. We can accommodate this consideration by rewriting the
parameter space of  as Q = {((+"), (v¥)) : vl = 79 v = v¥ v = 0 and (r!,0¥) €
Q9 for all i # j}. Note that this relabeling does not alter the predictions of model 8, but
allows us to embed 6 into a larger parametric family with the following meta-parameter
space,

Q§:\H%+ X ... x Ry XERJF X ... XRt'

~~ ~~

rlpr2 N V11,022,--, UNN
Of course, the investor may also be open to all possibilities within the normal distribution
framework, in which case he further drops the no-correlation assumption and consider a

0 _ 2N N(N-1
meta-parameter space () = RZ" x R (N=1)

5.2 Characterization

In this subsection, I provide necessary conditions and sufficient conditions for constrained
local robustness. New challenges emerge as a result of the constraint we impose over
the competing models. First, models sufficiently close to a misspecified model must

also be misspecified, which prevents us from using Lemma 1. Second, contrasting the
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case of local robustness, it is now infeasible to perturb model predictions unanimously
towards the true DGP, since the perturbed model may not be in the constrained family.
Therefore, there is no reason to believe that constrained locally robust models must

induce a self-confirming equilibrium.

Necessary conditions. We can still take inspiration from the characterization of local
and global robustness. For model 6 to be constrained locally robust, then at least in
the limit, the agent should not find a nearby model within the same family consistently
better fitting. That is, we can break down the characterization into two parts—the
identification of a proper equilibrium concept and a good measure of prediction accuracy.

Characterizing the asymptotic behavior of a dogmatic modeler is one of the central
questions in the misspecified learning literature. A major finding of the literature is
that whenever the modeler’s behavior stabilizes, the limit behavior must constitute a
Berk-Nash equilibrium that I define below (Esponda and Pouzo, 2016; Esponda et al.,
2021).

Definition 10. Strategy o € AA is a Berk-Nash equilibrium (BN-E) under 6 if there
exists a supporting belief 7 € AQY (¢) such that the following conditions hold.

(i) Optimality: o is myopically optimal against 7, i.e. o € AAY (7).

(ii) KL-minimization: every w in suppm is a minimizer of the o-weighted KL diver-

gence,
w € arg minZa (a) Drr (¢° (a) || ¢° (-|a, ")) .
A

w'eNn’

For convenience, denote by QY () the set of all KL-minimizers at ¢ under 6. Intu-
itively, these parameters yield the closest match to the true DGP among the parameters
of model 6 when the agent plays . Besides myopic optimality, a Berk-Nash equilibrium
requires that the supporting belief 7 takes support on the KL-minimizers. Every model
admits at least one Berk-Nash equilibrium (Esponda and Pouzo, 2016). Note that a
SCE is a special form of a BN-E—any consistent parameter must also minimize the KL
divergence.

Next, I turn to the choice of the prediction accuracy order. If model # is constrained
locally robust, then the predictions of 8 should be more accurate than any sufficiently
close competing model in the same family after the agent settles down with a Berk-Nash
equilibrium. A natural choice is to compare the KL divergence of the predicted outcome

distributions.
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Definition 11. Model 6 is locally KL-minimizing at strategy o within the 6-family
if there exists ¢ > 0 such that ), o(a)E <ln M) < 0 forall w € Q(0), W €

q(-la,w)
QN B, (2 (0)).*

In words, this condition says that any KL-minimizer in the parameter set of model
6 is also a local KL-minimizer within the meta-parameter space Q2. Theorem 3 shows
that if the action of a #-modeler converges, constrained local robustness indeed requires

the existence of a p-absorbing BN-E and local KL-minimization.

Theorem 3. Suppose that the action of a 6-modeler almost surely converges under all
full-support priors. If model 6 € ©° is f-constrained locally robust, then it must admit a

pure p-absorbing BN-E o at which 0 is locally KL-minimizing within the 0-family.

There is one caveat: Theorem 3 is established with the presumption that the action
sequence of a #-modeler converges over time, but this may not the case in general. When
the agent holds a misspecified model that persists against a correctly specified model,
her action must converge to the support of a self-confirming equilibrium (Lemma 1).
But this convergence property is lost once we shift our focus to misspecified models.
When the behavior of a #-modeler does not converge to (the support of) any Berk-Nash
equilibrium, model # may persist even without being locally KL-minimizing at any BN-
E. I show that Theorem 3 still holds without the convergence assumption as long as A
is binary (see Theorem 6 in Appendix B).

The majority of the misspecified models in the literature features convergence of
behavior. In most cases, specific assumptions over the types of misspecification and the
outcome distributions are imposed to ensure convergence of actions or action frequencies
(Nyarko (1991); Heidhues et al. (2018); He (2022); Ba and Gindin (2022)). In the
Appendix, I extend Theorem 3 to accommodate situations where the agent’s action
sequence does not converge but her action frequency does.?” In those environments,
Theorem 3 provides a simple criterion to determine if a given model is constrained

locally robust.

Sufficient conditions. It remains to be examined whether the condition in Theorem

3 is sufficient for constrained local robustness. It turns out that higher accuracy in terms

31Note that this is equivalent to the requirement that the KL divergence associated with w is lower
than that of o', i.e. Dy, (q*(-a) || g(la,w)) < Dics, (a*(1a) || gl-la, ).

32Formally, given a finite action space A and an action sequence (a1, as,...), the action frequency
sequence is given by (o), where oy (a) = 1 St 1{a;=q}- Esponda et al. (2021) establish global almost-
sure convergence of a dogmatic modeler’s action frequency to a BN-E if it is “globally attracting”, where
global attractiveness is defined based on a differential equation that describes the evolution of the action
frequency.
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of lower KL divergence is a little weak for this purpose. In particular, the predictions of
model 6 can be shown to be more accurate than those of neighbor models in the limit but
not consistently so starting from any given period, but the latter is critical in ensuring
the agent does not switch to the competing model before the Berk-Nash equilibrium is
reached.*® Frick et al. (2023) develops a slightly stronger order of prediction accuracy
that partially restores the supermartingale argument. I build on their order and define

a local dominance property to compare the prediction accuracy across models.

Definition 12. Model  is locally dominant at strategy o within the f-family if there
" @ _

exists €,d > 0 such that E (%) <1 forallw € Q%0), ' € QN B(Q%0)), and

a € supp(o).

In words, this condition requires the existence of some positive d such that for the d-th
power of the likelihood ratio between any neighbor parameter w’ in the meta-parameter
space and any KL-minimizer w has an expectation weakly lower than 1, whenever the
agent plays the BN-E actions. Local dominance comes for free when o is a self-confirming
equilibrium, because the expected likelihood ratio between any w’ and any consistent w
is always 1. Local dominance strengthened local KL-minimization in two aspects. First,
local KL-minimization only compares nearby parameters at the mixed action ¢ while

local dominance makes a comparison at each action in the support of o. Second, fixing

A d
an action a, as Frick et al. (2023) point out, if E (M> < 1 for any d > 0, then we

q(-law)
immediately have E (ln qq(('.||‘;’°:;))> < 0.3

Theorem 4. Suppose model § € ©° admits a pure p-absorbing BN-E o at which 0 is

locally dominant within the O-family. The following are true:
(i) Model 8 is O-constrained locally robust.
(ii) If O has no traps, then it is O-constrained locally robust at all full-support priors.

Theorem 4 confirms our conjecture that the existence of a pure p-absorbing Berk-
Nash equilibrium and local dominance are sufficient for constrained local robustness.
Similar to local robustness, the notion has no prior tightness requirement under the no-

trap conditions.®® Theorem 4 can be generalized to the case with a mixed p-absorbsing

33The reason is more technical than conceptual: as pointed out by Frick et al. (2023), when a
distribution ¢ yields lower KL divergence than ¢’, their log-likelihood ratio In(q’/q) constitutes a super-
martingale but this supermartingale can be unbounded below, preventing us from invoking the relevant
maximal inequalities.

34The converse is not true: even if the inequality based on KL divergence holds in a small neigh-
borhood of w, this does not imply there exists d > 0 such that the inequality based on likelihood ratio
holds uniformly for all w’ in the neighborhood.

35Note that we have to replace the SCE in the no-trap conditions with a BN-E.
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BN-E, but the statement is much more involved.?® Analogously, we can characterize
p-absorbingness by quasi-strictness. Since we focus on a pure equilibrium, this further

simplifies to strictness.

Corollary 3. Model § € ©° is 0-constrained locally robust if 0 admits a strict BN-E at
which 0 is locally dominant within the 0-family.

6 Applications

I present two applications to demonstrate how results in this paper uncover new insights
about the persistence of misspecified models. The first application illustrates our earlier
finding that simple misspecified models may have better robustness properties than some
correctly specified models. The second application revisits the comparison between over-

and underconfidence in more general environments.

6.1 Media Bias, Extremism, and Polarization

In this application, I consider a stylized model of media consumption and demonstrate
how misconceptions about media bias (Groseclose and Milyo, 2005) can lead to stable
polarization in political views despite no individual partisan bias. The misspecified
model with these misconceptions and an extremism bias is globally robust regardless of
the initial conditions. Even more surprisingly, people may abandon a correctly specified
model, switch to such a misspecified model and then get stuck forever.

The agent has access to three media outlets and in each period she chooses one to
consume, A = {a* a a®}. The media outlets are indexed by their political leanings,
left-wing, neutral, or right-wing. Each media outlet delivers two types of news, ) =
{l,r}, where [ represents good stories for the leftists and r represents good stories for
the rightists. The unknown state of the world w € Q = {w¥ wM W} governs the
fraction of [ and r stories happened in the real world and it remains fixed throughout
the life of the agent. In particular, 60% of the stories are [ stories (r stories) in state w’
R

)

(w!), while an equal share of [ and r stories happen in state w*. The three media outlets

differ in their ways of news reporting: in each state of the world, media a™ truthfully

reports the stories without bias, media a” selectively reports [ more than media a™,

36 Additional conditions are needed if o is not pure. Suppose ¢ is a p-absorbing mixed BN-E. Unless o
is self-confirming, when the agent only plays actions in the support of o, the parameters that empirically
best fit the observed data can change with the empirical action frequency and are not necessarily be
given by Q%(c). Hence, the likelihood ratio between a parameter in QY and 6 cannot be bounded using
the likelihood ratio between that parameter and a KL-minimizer in (o). To generalize Theorem 4, we
need the existence of a p-absorbing mixed BN-E ¢ such that Q%(c’) = Q%(o) for each o’ € Asupp(o)
and 6 is locally dominant at ¢ within the -family.
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Table 4: The left panel summarizes the true fraction of [ stories reported by each media
outlet in each state of the world. It is also a description of the correctly specified model
6. The right panel describes the predictions of a misspecified model 6.

and media a® selectively reports r more than media a. The left panel of Table 6.1
summarizes the true fraction of [ stories reported by the media in different states. We
restrict attention on the world in state M, where the true fractions of [ stories reported
by the three media are given by (0.6,0.5,0.4).

In this exercise, we focus attention on the comparison between two different models
6 and 6 that I describe in Table 6.1. Model 6 is correctly specified: a #-modeler realizes
that w™ is a possible state of the world and are fully aware of the bias of both the
left-wing and the right-wing media outlets. By contrast, model 0 is misspecified in two
aspects. First, f features extremism because it only recognizes the possibility of the
extreme states w’ and w®. Second, f features naivety about media bias: a 6-modeler
underestimates the selective reporting bias of the left-wing a” and right-wing media a’,
and also underestimates the informativeness of the neutral media. As a result, when a
f-modeler subscribes to the left-wing media and finds that 60% of the stories are good
stories for leftists, she does not interpret it as evidence for the middle state w™ (which
does not exist in her extreme worldview), but treats it as evidence for the left state
w’; a similar logic applies to the right-wing media. She also mistakenly thinks that the
reporting of the neutral media is totally uninformative about the state.

To highlight the core mechanism, I abstract away from specifying the payoff structure
and outline the minimal assumptions that allow us to apply the characterization theo-
rems in Section 4. It is straightforward to verify using Table 6.1 that the SCE supporting

beliefs mentioned in Assumption 3 are indeed consistent.
Assumption 3. When the true state is w™, the following are true:
(i) Model 0 admits a unique SCE a™ and it is strict, supported by belief 6, .

(i1) Model 6 admits only two strict SCEs, a* and a*, supported by d,. and 6 r, Te-

spectively.

Assumption 3 is natural and intuitive. With the correctly specified model 6, the agent

infers the true state and subscribes to the neutral media. With the misspecified model
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é, however, the agent develops partisan bias and only subscribes to the media biased
towards her political belief. The choices of the agent can be justified as the result of
maximizing the sum of emotional and informational value from news consumption.*”
Model 6 has an advantage over model # due to its extremeness. Since both models 6
and 6 admit at least one SCE, Theorem 1 tells us that both models are globally robust at
some prior. Interestingly, Theorem 2 implies a counter-intuitive result (see Proposition
1 below): model @ is globally robust only when the associated prior assigns high enough
probability to the true state w™, while model 0 is globally robust at all priors. In other

words, model 0 is globally robust in a robust way.

Proposition 1. Fiz any o > 1. Model 0 is globally robust at prior 75 if and only if
78 (wM) > 1/, while model 0 is globally robust at all priors.

Despite being misspecified, model 6 has a stronger global robustness property, because
its narrative is simple, coherent, and balanced. To see this, notice that all parameter
values in model 6 are consistent, i.e. ol = {wh Wit} = Qf. This makes it possible for
model 6 to persist against any competing model. For example, model 6 can outperform
a left-biased competing model in explaining the data when the agent happens to read a
series of r stories, and similarly it can outperform a right-biased competing model when
the agent happens to read a series of [ stories. If the competing model is unbiased and
correctly specified such as model €, model 6 still persists because of its simplicity.

Proposition 1 characterizes the robustness properties of # and 0 separately with the
implicit assumption that they are the initial model choice of a switcher. What if a
switcher originally adopts 6 and entertains 0 as the competing model? Whether she will
abandon 6 in favor of 6 is a priori unclear. While # may not be globally robust at a
given prior, this only tells us that € does not persist against some competing model, but
this competing model may not be 6. Surprisingly, as I show in Proposition 2, 6 indeed
replaces 6 with positive probability if the switching threshold is low.

Proposition 2. Fiz any full-support priors 73, 7rg and any o < 1/74(w™). In the

switcher’s problem (Q,é,wg,wg), the model choice m; eventually equals 0 with positive

probability.

In summary, this application generates three novel insights about news consumption
and political beliefs. First, extremism and naivety about media bias go hand in hand and
their persistence is robust against arbitrary competing narratives. Second, individuals
may abandon their correct models and switch to incorrect alternatives because of their

extremeness/simplicity. Third, even though the extreme and naive model has no built-in

37 A micro-foundation is provided in Appendix C.
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political bias, individuals who hold such a model gradually develop a strong partisan
bias over time. The direction of the partisan bias is random and path-dependent, leading
to long-term political polarization.

6.2 Overconfidence and Underconfidence

In this application, I compare the robustness properties of over- and underconfidence in
more general environments. I restrict attention on the prior-free local robustness notions
since the interesting difference between over- and underconfidence only concerns the
induced equilibria. I show that under natural assumptions, any level of overconfidence
is locally robust while underconfidence is locally robust only on a union of unconnected
intervals.

This result breaks the symmetry between overconfidence and unconfidence and pro-
vides a novel mechanism for why we might expect one bias to be more persistent than the
other. A plethora of evidence in psychology and economics suggests that overconfidence
is more prevalent than underconfidence, and many hold the view that this is because
agents derive ego utility from holding overconfident beliefs about their own positive traits
(Brunnermeier and Parker, 2005; Koszegi, 2006; Oster, Shoulson, and Dorsey, 2013). By
contrast, I provide a reason rooted in the learning environment itself: overconfidence has
better robustness properties than underconfidence when the agent can switch models.

As in our motivating example, an agent chooses effort a; from a finite set A in each
period. The agent has payoff u(as, y;) = y:, where y; is the output of his work, including
possibly any cost of effort. The output takes the form of y, = g(as, b*,w*) + n;, where
function ¢ is twice continuously differntiable and strictly increasing in b and w, b* € [b, b]
represents the agent’s ability, and w* € [w,®] captures a fundamental of the outside
environment, such as the market demand or the quality of the agent’s organization,
and 7, follows a known zero-mean normal distribution. The output function is strictly
concave in effort a;. In addition, following Heidhues et al. (2018), I assume that the
optimal effort decreases in the fundamental and weakly decreases in one’s ability, as
captured by Assumption 4.%°

92g
dadw

Assumption 4. Function g satisfies gqp = g > 0.

—MSOandgaw::

I consider misspecified models that assign probability 1 to some b e b, _] which

deviates from its correct value. The agent is dogmatically overconfident about his ability

38The assumption that effort and the fundamental are complements are natural but not critical. If
we alter the orientation of a;, then effort and the fundamental become substitutes, but all results remain
unchanged. The important assumption that leads to positive belief reinforcement for overconfidence
and negative belief reinforcement for underconfidence is that g, has a different sign or is much larger
than ggp.
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when b > b* and dogmatically underconfident when b < b*. To avoid trivial cases of non-
robustness, I focus on models whose parameter sets are complete: if the model assigns
probability 1 to b, then for all @ € A, the set QY contains the value & that satisfies
g(a,b,®) = gla, b*,w*).

Under Assumption 4, beliefs about the fundamental are positively reinforcing when
the agent is overconfident and negatively reinforcing when underconfident, as summa-

rized below.

Property 1 (Belief reinforcement). When the agent is overconfident (underconfident),
higher beliefs lead to higher optimal actions, i.e. max A?(0,,) < min A°(S,) for all w" >
/

W', and higher actions leads to higher (lower) beliefs, i.e. maxQ?(6,) < minQf(J,n)
(min Q%(8,/) > max Q9 (5,)) for all " > a'.

The first part that higher beliefs induce higher actions follows from the assumption
that one’s effort and the fundamental are complements. The intuition for the second part
is similar to the motivating example: as a result of overconfidence (underconfidence),
he underestimates (overestimates) the fundamental; when a higher action is played, the
return to the fundamental w is higher because g4, > 0, and thus the positive (negative)
gap between the true state w* and the inferred fundamental @w should be smaller such
that expectations meet the reality, implying that the inferred state w is larger (smaller).

Proposition 3 characterizes the robustness properties for different self-perceptions.

Proposition 3. Suppose model 6 has a dogmatic self-perception b and a complete pa-

rameter space, then the following are true:
(i) Model 6 with any level of overconfidence b> b is locally robust.

(ii) There exists a strictly decreasing sequence By < ... < 1 < [y = b* such that,
model 6 with underconfidence is locally robust sz € (Boka1, Por) for any k € N and
not locally robust zflA) € (Bak, Pok—1) for some k € N,.

Proposition 3 shows that overconfidence is locally robust, but underconfidence is only
locally robust on unconnected intervals. The rest of this section illustrates the mech-
anism behind this result. First note that in this environment, if any pure Berk-Nash
equilibrium induced by model ¢ must be self-confirming because the agent can, by the
completeness of the parameter set, perfectly justify his observations by forming an incor-
rect belief over the fundamental. By contrast, a mixed Berk-Nash equilibrium can never
be self-confirming in this environment—the agent necessarily finds his self-perception b
inconsistent with the observations because no single value of the fundamental can rec-

oncile the outcome distributions at more than two effort levels when b # b*. It can be
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shown that any competing model with a self-perception that is slightly closer to the
truth would fit better uniformly at any effort levels. Therefore, Proposition 3 follows
from Theorem 1, provided that we can show overconfidence ensures the existence of a
pure and p-absorbing BN-E while underconfidence sometimes gives rise to mixed BN-Es
only.

To illustrate, suppose the agent chooses from three effort levels @' < a* < a” where
a* is the unique optimal effort level when the agent knows the true DGP. Now consider
an overconfident agent with b > b* and suppose there exists a mixed BN-E in which
the agent finds both a’ and a* optimal against a supporting belief d;. Then for any
assessment about the fundamental that is lower than w, he strictly prefers the lower
effort a/, which, due to positive reinforcement, implies that he indeed finds a lower
assessment of the fundamental more accurate. Therefore, effort a’ must also constitute
a SCE and, since it is strict, Corollary 1 implies the model is locally robust.

Next let us turn to an underconfident agent with b < b Suppose there exists a
mixed BN-E in which the agent finds both a* and a” optimal against belief d;. Then
for any higher assessment of w, he strictly prefers the higher effort a”, which, due to
negative reinforcement, induces his belief over w to drift downwards; by contrast, for
any lower assessment of w, he strictly prefers the lower effort a*, which induces his belief
to drift upwards. Therefore, the mixed BN-E is the only BN-E and thus the model is
not locally robust. That being said, as b further decreases, the agent might find the
high effort a” strictly optimal, upon which the unique BN-E becomes pure and thus
self-confirming. This then gives rise to unconnected intervals of non-robustness and

robustness as described in Proposition 3.

7 Extensions and Discussion

7.1 Multiple Competing Models

This extension explores the consequence of the agent entertaining multiple competing
models. The framework described in Section 3 could be easily extended to accommodate
more than one competing models. Let © C © denote the finite subset of competing
models that the agent entertains in the beginning and ©7 := ©' U {6} denote the set
of all models entertained. In the beginning of each period ¢, she compares her current
model against all alternatives and switches to the one with the highest likelihood ratio
if it exceeds the switching threshold «. Specifically, the agent calculates the likelihood

ratios between each model in ©f and the model she used in last period, A; == (\Y )y cor,
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where

A= 0,00 /4, (my_y). (12)

The agent then makes a switch if maxycor A! > a and switch to the model ¢ with the
highest likelihood ratio.

The definitions of persistence and all notions of robustness can be modified by simply
replacing 6’ by ©'. Suppose the agent entertains at most K > 1 competing models,
then global robustness would require 6 to persist against every ©' C © of size no larger
than K at all priors assigned to models in ©. Local robustness notions can be similarly
extended.

Interestingly, the consideration of multiple competing models introduces overfitting.
In particular, when the switching threshold « is not adjusted as the number of competing
models K becomes larger, even the true DGP may fail to be globally robust. Relatedly,
Schwartzstein and Sunderam (2021) find in a static setting, a decision maker switches
from the true DGP to a competing model when a persuader is allowed to propose one
after the data is realized. By contrast, I show that the persuader can achieve the same
goal even if he has to propose before the outcomes are drawn, provided that he can
present multiple competing models. More importantly, not only must the switcher switch
at least once to the competing models, due to sticky switching, she may eventually settle
down with one of them despite that the true DGP fits the data perfectly on average. For
concreteness, I now construct a decision problem and K competing models such that
the true DGP 6* does not persist when K > o + 1.

Example 4 (Overfitting). The agent has two actions A = {a’,a”}. The true DGP is
a uniform distribution over K outcomes, Y = {1, ..., K}, regardless of the action. The
agent incurs a loss of —K when drawing the outcome y = 1 and receives a payoff of 0
if any other outcome is realized. The agent pays an additional cost ¢ > 0 for playing
a’ and no cost if she plays a”. The agent’s initial model @ is the true DGP. Hence, the
agent optimally plays a” in the first period to avoid the cost.

Suppose the agent evaluates K competing models that I describe below. Each model
0% € {0, ...,05} has a single parameter w*. When ¢’ is played, model 6% agrees with the
true DGP, and its prediction corresponds to a uniform distribution. When a” is played,
model 0% disagrees with the true DGP. For any k > 1, 0% predicts

39Note that if © is not a singleton, then persistence against ©’ is not equivalent to persistence
against each model in ©’, and neither implies the other. See Appendix C for examples.
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-+ —(K-1)p ify=n,
k
¢ (yla", ") = ¢ £+ ify =1,
U ify € Y\ {Ln},

where 7 is a small positive constant. When k =1, qek(-|a” ,wk) is given by

1—-(K-1)p ify=1,

qé’l (y\a",wl) _ .
n ifye Y\ {1}

Importantly, model #* predicts that when a” is played, the outcome k is realized with
probability near 1. Since there is one such model for every possible outcome, the agent
must switch to one of these competing models after the first period. In particular, if the
realized outcome is k, the agent immediately switches to model #* when 7 is sufficiently

small,
(0% 1= %= (K =1y
6(0)

1
K
where such 7 exists because K > o + 1.

Next, since each competing model assigns a probability larger than 1/K to the out-
come 1, once the switch happens, the agent finds it optimal to play a’ to avoid the loss
associated with outcome 1 as long as c is sufficiently small. However, since all models
have the same correct predictions under @, the likelihood ratios remain unchanged there-
after. Hence, despite initially having the true model, the agent becomes permanently

trapped with a wrong model and inefficient play.

The trap described in Example 4 is different from the trap we constructed in Example
1. To see that, note that 6* satisfies the no-trap conditions in Definition 7 since it is
identifiable and has a quasi-strict SCE. The agent in Example 4 gets trapped because
a' is strictly dominant under the competing models and all models have the exact same
predictions once a’ is being played, eliminating any possibility of future learning and
switching. However, the driving force that leads the agent into the trap in the first place
is indeed similar in the two examples. In Example 1, the agent holds a diffuse prior,
rendering his model choice to be sensitive to early outcome realizations. In Example 4,
overfitting also arises in the short term and prompts an early switch to other models.
The more competing models the agent evaluates, the more likely such a switch occurs.

Therefore, a natural remedy is to make switching stickier so that agent is less respon-
sive to early outcome realizations. Indeed, Theorem 5 shows that if o > K, the scope

of local and global robustness does not change at all and Theorem 1 fully generalizes
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to this environment. A larger bound may be needed for constrained locally robustness
because local dominance is weaker than the self-confirming property, but when « is large

enough, Theorem 4 also generalizes.
Theorem 5. Suppose the agent evaluates at most K competing models.

1. Suppose a > K. Model 0 is locally and globally robust for at least one prior if and
only if there exists a p-absorbing SCE under 6.

2. Suppose a > KY? for some d > 0. Model § € ©° is O-constrained locally robust if 0
admits a pure p-absorbing BN-E at which 0 is locally dominant within the 0-family

and the local dominance condition in Definition 12 holds at d.

This extension shows that the consideration of multiple competing models at the
same time can make persistence more difficult due to overfitting. While one may expect
such considerations to work towards the direction of reducing robust misspecification,
they turn out to have as much bearing on correctly specified models as on misspecified
models—in particular, as demonstrated in Example 4, even the true model may not
persist. After adjusting the switching threshold for the increasing number of competing
models, our main characterization remains valid, continuing to allow both correctly

specified and misspecified models to be robust.

7.2 Non-myopic Agent

Our baseline framework focuses on a myopic agent and rules out any experimentation
motives. This assumption can be less substantial than one might think. In this subsec-
tion, I discuss two potential ways of relaxing this assumption.

First, we may assume that the agent is non-myopic within each model but maintain
that she is myopic across models. That is, when choosing an optimal action, the agent
maximizes her expected discounted sum of payoffs assuming that she keeps her current
model m; in the future. An optimal policy f? solves the following dynamic programming

problem,

U’ (7]) = max 7 (w) /yey [u(a,y) +0U° (B’ (a,y,7)))] ¢’ (yla,w) v (dy) .

acA
weN?

How should we interpret the asymmetry between experimentation within models and
no experimentation across models? This asymmetry again highlights the stickiness of
switching models as opposed to the smoothness of Bayesian updating, and it is plausible

when resources are constrained. For instance, consider an applied data scientist who
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uses one single model to guide data collection and make policy recommendations. While
he is aware of potential misspecification, he may choose not to spare valuable resources
in additional experiments to find the best model. However, he may indeed switch to a
different model if the data at hand happens to suggest its superiority.*’

If we relax the myopicity assumption this way, Theorems 1 to 4 go through without
changes. This claim may appear surprising at first, because experimentation motives
should make it harder to sustain a self-confirming equilibrium or a Berk-Nash equilib-
rium, and thus the set of robust misspecified models might be smaller if the agent is non-
myopic. This intuition is correct—as the agent becomes more patient, p-absorbingness
is harder to achieve. However, note that the theorems only establish the equivalence
relationship between the existence of p-absorbing equilibria and the models’ robustness
properties, so whether p-absorbingness can be achieved is irrelevant. In the Appendix,
I provide stronger sufficient conditions for p-absorbingness such that variants of Corol-
laries 1 and 3 continue to hold.*!

Alternatively, we may assume the agent is forward-looking both within and across
models. If the agent anticipates future model switches, she may intentionally take ac-
tions that allow her to distinguish different models, even if her current model predicts
a different optimal action. Characterizing robust models in this environment is signifi-
cantly more challenging and beyond the scope of this paper. I conjecture that the set of

robust misspecified models will shrink as the agent becomes increasingly patient.

7.3 Alternative Definitions of Persistence

This subsection discusses alternative definitions of model persistence. Our definition
of persistence in Section 3 requires that if a switcher initially adopts this model, she
eventually settles down with it with positive probability. This concept has a natural
interpretation and can be used to predict whether a particular bias is likely to exist in a
stable form. However, by relaxing or strengthening different parts of this definition, we
can obtain a couple of variants that are also worth exploring. These alternative defini-
tions are useful if one looks for models with stronger or weaker persistence properties.
This investigation also helps us better understand the original definition since it sheds

light on the importance of the different parts of the concept.

40This assumption is also natural in organizations where decision making and model estimation are
handled by separate teams. For example, a manager (e.g. the chairman of a central bank) chooses
policies based on the predictions made by the research team (e.g. a group of macroeconomists), while
the research team focuses on estimating the models given the available data.

41In particular, any uniformly quasi-strict SCE is p-absorbing, and so is any uniformly strict BN-E.
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Almost sure eventual adoption. The first natural extension is to strengthen persis-
tence by requiring that the model is eventually adopted with probability 1. That is, any
such model is guaranteed to win out in the competition. But almost-sure persistence
turns out to make global and local robustness impossible. In fact, given any model
(including the true model §*), we can easily construct a nearby competing model ¢’ such
that the competing model is eventually adopted with positive probability. The idea is
that the agent can draw a sequence of outcome realizations that can be better explained
by the competing model, and once a switch happens, the agent does not feel compelled to
switch back since the predictions of the two models are identical in the limit. Therefore,

almost sure eventual adoption can be too restrictive to be any useful.*?

No switch. The current definition of persistence allows for back-and-forth switching
before the eventual adoption of the model. A more conservative definition could have
required the agent to adopt the same model throughout. It turns out that all theorems
continue to hold even with this conservative definition. Indeed, model switching does
not play any role in ensuring local and global robustness when there are no traps—in the
proof of all main theorems, I show that there exists a sequence of outcome realizations
that induce the agent to play a SCE while remaining under the same model. When there
are traps in the model, however, a temporary switch to the competing model can be
instrumental to the persistence of the initial model because switching to the competing
model may happen to keep the agent away from the traps. A full characterization of

this case is left for future research.

8 Concluding Remarks

In this paper, I propose a new theoretical framework to study the persistence of mis-
specified models when decision makers are aware of potential model misspecification. I
introduce sticky switching to the standard model of individual active learning and study
the limit of the model choices. I explore three different robustness notions and use them
to derive novel insights about which models persist and when they persist. I show that

all three robustness notions can be characterized in terms of two properties, asymptotic

42To do this, let us construct 6’ such that it contains all DGPs in # and one additional DGP that differs
from any other DGPs for all actions in 6. That is, we have Q¥ = Q? U{&}, where ¢% (-]a,w) = ¢°(a|-, )
and ¢ (-]a, ) # ¢°(|a,w) for all w € QF and all actions a € A. In addition, let the prior 7§ be
proportional to 71'8/ for the all shared parameters. With this structure, the Bayes factor \; is bounded
below by 7§ (Q%). Note that since & predicts differently from model 6, it is always a positive-probability
event that the agent finds model 6’ particularly compelling and make a switch because of the existence
of w. But then the agent never switches back if the lower bound of the Bayes factor, wgl(QGL is higher
than 1/a, which can be achieved if we make 78 () sufficiently close to 1.
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accuracy and prior tightness.

The idea that the existence of self-confirming equilibria can explain why incorrect
models persist can be found in the existing literature (Heidhues et al., 2019). Instead of
assuming that the agent starts outright from an equilibrium, my framework incorporates
full-fledged model switching dynamics into active learning processes. The characteriza-
tion highlights the importance of this consideration. Robustness not only requires the
existence of a self-confirming equilibrium but also needs it to be p-absorbing, which con-
nects the notion of model persistence with the stability of equilibria. Furthermore, global
robustness requires high prior tightness around the set of p-absorbsing self-confirming
equilibria. This finding provides a theoretical justification for the empirical observation
that simple narratives and entrenched worldviews tend to be more persistent.

The model-switching framework has great application value. My characterization of
robust models, stated in the form of simple criteria that can be easily verified from the
primitives, provide a learning foundation for certain misspecified models, some of which
are already studied in misspecified learning literature. It can also be used to predict
the persistence of given behavioral biases in specific contexts, which can be useful for
guiding empirical work on behavioral economics and relevant policy making.

Within this general framework of model switching, there are many other interesting
questions to pursue. For example, persistence requires a positive chance of eventual
adoption, but this concept is silent about the size of this probability. New insights may
emerge from studying how this probability is determined by key primitives of the model,
such as whether it is correctly specified or misspecified, and features of the learning
environment, such as the switching stickiness. Another potentially fruitful direction
could be to restrict attention to a given small set of models and fully characterize the
dynamics of model choices, i.e. how a decision maker oscillates between two or more

competing models persistently.
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A Auxiliary Lemmas

The underlying probability space (Y, F,P) is constructed as follows. The sample space is
% = (yOO)A, each element of which consists of infinite sequences of outcome realizations
(Ya,0 Ya,1,--.) for all actions a € A, where y,; denotes the outcome when the agent
takes a in period t. Let us denote by IP the probability measure over ¢  induced by
independent draws from ¢* and denote by JF the product sigma algebra. Let h =
(at, Yt) 4o denote an infinite history and H = (A x J)™ be the set of infinite histories.
Combined with the switching threshold «, the switcher’s problem (6,6, 7%, 7%), and
policies (f?, %), P induces a probability measure over H when the agent is a switcher,
denoted by Pgs. Meanwhile, the measure P, prior 7, and policy f’ induce a different
probability measure over H for a 8-modeler who uses the same prior and policy, denoted
by Pp. All probabilistic statements about a switcher are made with respect to Pg and

all those about a #-modeler are with respect to Pp, unless indicated otherwise.

Lemma 2. Consider any switcher’s problem (0,0, 78 ) in which 6,0 € © and ¢'
is correctly specified. The ratio €,(0)/0,(0") a.s. converges to a non-negative random

variable with finite expectation.

Proof. Let ky = (,(6)/0:(0'), then kg = 1 and k; > 0,Vt. I now construct the probability
space in which k; is a martingale. Given prior ﬁg/, denote by }P’%’ the probability measure
over the set of histories H as implied by model (9’ Formally, for any HCH , we
have P% (I:[ > =Y cqr T (w )]P’g o <H ) where IP’ “ is the probability measure over H
induced by the switcher if the true DGP is as described by ¢’ and w. Take the conditional

expectation of x; with respect to P%, then we have

E"s (¢|he)
:EIP‘;' [ ZwEQG qe (Ye—1|a¢—1,w) 7Tt6 1 (W) Ky l‘ht}
Zw GQ@’ (yt 1’0”5 1, W )ﬂ-tall(w,>

0
w q (ye—1]|ag—1,w) w /
— Z 7T |:/ Z end t— 1| t—1 ) tell( )/)qe (yt 1|at L@ ) (dyt 1)

699/ went 4 yt 1|at 1,W)7Tt 1(w

>wear €@ (W—t|ar—1,w) )| (w)
:/ft_l/ €Nl tell Z q yt 1|at 1,W >7Tt l(w) V(dyt—l)
y

Zw’eQe' qu (yt—1|at—1vw/) M1 (w,) 5ed’

Zﬁt—l/y Z q (Ye-1laz—1,w )Wt (W )] v (dys—1)

LweQ?

=i 3 | o el v )] 7 ) = i
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Hence, k; is a martingale w.r.t. Pg. Since x; > 0,Vt, the Martingale Convergence
Theorem implies that x; converges to k almost surely w.r.t. IP’(;/, and EFs < EFS ko = 1.
Since ' is correctly specified, there exists a parameter w* € QY such that ¢* (-|a) =

¢" (-la,w*),Va € A. It then follows from 7§ (w*) > 0 that &, also converges to s almost

9/ * . .
surely w.r.t. Pg® . which is the same measure as Ps. Moreover, Ex < oo because

otherwise it contradicts EFS x <1. O

Lemma 3. Suppose 0 € © persists against a correctly specified model ' € © at some
full-support priors 7§, 7rg'.
0/

00’

Then on paths where my; eventually equals 0, we have Ay ==

/a.s. 0 a.s. 0
Ao L, M — T, and T — W

Proof. Tt immediately follows from Lemma 2 that £,(6")/¢;(0) == ¢ < a on paths where
my converges to #. I now show that 7¢ and 7" also converge almost surely. Given any

w € QP we can write

Ty (W) _ [T ¢’ (yrlar,w)
Wg (w) Zw/ege HtT_zlo q° (y7|a7, W/) 7T8 (W,)
0.(0) [T ¢ (yrlar, w)

(

C(0) Y rear TT20 ¢ (yrlar, w”) 7l (W)
00" €,(0,w)

0G0)  60) "

where the second term ¢,(6,w)/¢;(6') can be seen as the likelihood ratio of a model that
consists of a single parameter w and the competing model §'. By Lemma 2, ¢,(0,w)/¢,(6)
a.s. converges to a random variable with finite expectation. Consider the paths on which
my converges to 6. On these paths, both ¢,(0")/¢,(0) and ¢,(6,w)/¢:(0") converges a.s.,
which implies that 7 (w) a.s. converges to a random variable with finite expectation as
well. Since this is true for all w € QY 7? a.s. converges to some limit 7%, on those paths.

Analogously, for any w’ € Q7 we can write

" (W) _ 40w)
W) L)

which, again by Lemma 2, converges almost surely. O]

Lemma 4. Fiz any 6,0’ € ©, w e Q' € QY and any sequence of actions (ay,as,...).
For each infinite history h € (A x V) that is generated according to (ai,as,...) by the
true DGP, let

0 0
q (yt‘ataw) ( q (yt|ataw) )
h)y=In—"7"——"—— —E(In——%1|h; ] .
gt( ) qe (yt|at7w/) qg (yt]at,w’)| '
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Then for any fixed to > 1,

tlggo t—to+1 ZST )=0, a.s..

T=tg

Proof. Note that & (h) is a martingale difference process since E (& (h) |hs) = 0. So for
any to, & (h) = Zizto (t —7+1)""&, (h) is also a martingale difference process. To

use the Martingale Convergence Theorem, I now show that sup, E <(§f0)2> < 0o. Notice
that

E((¢,)") =E (Z (t-7+1)7'¢ <h>>

T=to
0
q (yt‘ata ))
< t—7+1 (ln -
Tz;) i q" (yilar, w’)
<3 (t—7+1)E (m q" (yelar) )2+<ln q" (yelar) )2
B —to i ¢ (ye|ar, w) q" (yeas, ')
t
<22 t—74 1) maxE [( (y))z] < 00,
T=to

where the first inequality follows from the fact that, for any 7/ > 7 > to, E (& (h) & (h)) =

E(E (& (h) |hr) & (b)) = 0 and the last inequality follows from Assumption 2. Now we

can invoke the Martingale Convergence Theorem which implies that & converges to a

random variable {£° almost surely with |E ((5;’:)2> < 00. Since £ = limy_,o St b =T+ )7 (h)
is finite a.s., it follows from the Kronecker Lemma that

lim (t —to+ 1) Z{} ) =0,a.s..

t—o0
T=to

]

Let us define action frequency o, : A1 — AA to measure how frequent each action

has been played up to period t. In particular, given an action sequence (ag, a1, ...), let

Zizo 1 (a; = a)'

t

o (a) =
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Lemma 5. Fiz any 0 € ©. Suppose the action frequency of a 8-modeler converges to
o, then her belief 70 satisfies ! (99 (0)) 2% 1. Similarly, if the action frequency of a
switcher with © 3 0 converges to o, then her belief w also satisfies 7 (Q7 (o)) 25 1.

Proof. The proof is completely identical for either a #-modeler or a switcher. Since 2

is finite, for any given o, there exists ¢ > 0 such that

Yo (@) [Drr (¢" (la) || ¢ (a.w)) = D (a (-la) [ ¢ (la,w")] < =€ (13)

A
for all w € Qf (0) and W' € QY/Q° (0). For any w € Q (0) and ' € Q/Q7 (o) at time ¢,
) (@) _ e d’ (yrlar. o) 7T8 (W)

(W) Tz (vrlar,w) 7 (w)
)

¢ (y-la-, 7T8 (w')
= exp In .
(Z ?(y-la-, ) 778 (w)

We are done if this ratio converges to 0. Notice that

1 ¢’ (y-|a-, ")
ZE( ? (y-lar, )|h>
= - Zat ) [Dxr (¢ (la) || ¢° (la,w")) = Dir (¢" (-la) || ¢° (-]a,w))]

which converges to the left-hand side of Eq. (13) as o, converges to . Hence, there
exists T} such that

! tiﬂ-a: e Wrlan ), N« _€ yes
- n—— -—= —— )
t ¢ (yrlar,w) " 2’ '
By Lemma 4, there exists T such that when ¢t > T,
-1 t—1

1 ¢’ (yrlar, ) 1 ¢’ (y-|ar, o)

- <-» E —7——~1|h

t X% Tl T2 ( Tyl

It follows that when ¢ > max {7}, T»},

t—1

Zlnw <t- (—é)

—~ ¢ (y-|ar,w)

Hence, :%((Z/)) converges to 0 for all w € Q% (0) and W’ € Q?/Q7 (o). O

53



Lemma 6. For any 0 € O, the optimal action correspondence A% : AQ? = A is upper

hemicontinuous in both the belief m and the agent’s discount factor o.

Proof. This is a standard result directly following from Blackwell (1965) and Maitra
(1968). [

Lemma 7. For any 0 € O, the set of all Berk-Nash equilibria under 6 is compact.

Proof. Denote the set of all Berk-Nash equilibria under model # as BN? C AA. Since
AA is bounded, we only need to show that BN? is closed. Suppose ¢ is the limit of
some sequence (0y,,), of Berk-Nash equilibria, but ¢ is not a Berk-Nash equilibrium, i.e.
o & BNY. Then for every belief 1 € AQY (¢), we have that o ¢ AA? (7). Since Q7 (-) is
upper hemicontinuous, it must be that QY (0,,) C Q (0) for large enough n. Hence, we
have o ¢ AAY (r) for every belief 7 € AQY (5,) when n is large enough. However, we
know that supp (o) C supp (0,,) for large enough n, which implies that o, ¢ AAY (7)

for large n. This is a contradiction. ]

B Proofs of Main Results

I prove all theorems under the assumption that the agent may be non-myopic within
each model but is myopic across models (see Section 7.2). This includes the special case

where the agent is myopic everywhere.

B.1 Proof of Theorem 1: (ii)<(iii)

I first prove Lemma 1, which implies the necessity of a p-absorbing SCE for global

robustness. I then prove Lemma 8, which is then used to show sufficiency.

Proof of Lemma 1. By Lemma 3, on paths where 6 is eventually forever adopted, beliefs
7% and 7" both converge almost surely. Consider any & such that with positive probabil-
ity, m; eventually equals § and @ € supp(7%). Let A= (@) = {a € A: ¢’ (-]a, ) # ¢" (]a) }.
I now show that every action in A~ (@) is played at most finite times a.s. on the paths
where m; converges to # and w € supp (Wgo). Suppose instead that actions in A~ (@) are
played infinitely often. Then there must exist some 7 > 0 such that ElIn % >
for infinitely many t. Since @’ is correctly specified, there exists a parameter w* € QY

such that ¢* (-|a) = ¢* (-|a,w*),Va € A. Hence, Eln % > ~ for infinitely many ¢.
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Notice that

G(0) _ Yuwear II—0d” yelar, o) mf (o)

) Ve Il ¢ (yrlar,w) mf (w)
mt (W) [T = " (yrlar, o)

0/~
> m (@) - = -
(@) T ¢ (vrlar, @)

0" (, % -1 0’ *

9/~ 0 (w*) q" (yrlay, w*)

=m (W ex g, ea-@n In ———————

¢ (@) (@) P Y larea-@) & (yrlan )

7=0

which, by Lemma 4, a.s. increases to infinity as ¢t — oo, contradicting the assumption
that m, converges to #. Therefore, on the paths where m; eventually equals ¢, almost
surely, there exists 7" such that a; € A\ U, equpp(rt) A (@), V0 > T

Since ¢’ (+|a,w’) = ¢* (|a) for all w’ € supp (7%) and all a € A\ Usresupp(rt,) A~ (W),
the actions that are played in the limit have no experimentation value and are my-
opically optimal. Therefore, any strategy that takes support on the limit actions is a
self-confirming equilibrium. Fixing a particular value of 7% that is a limit belief for a
positive measure of histories where m; eventually equals 6, there exists a set of actions
AcC Al (7‘[‘20) such that on those histories, the agent only plays actions from this set in
the limit. Since m; eventually converges to 6, it must be true that with positive proba-
bility, a #-modeler who inherits the switcher’s prior and policy from the period when the
last switch happens also only plays actions from A in the limit with positive probability.
Therefore, take any strategy ¢ with supp (o) = A, it is a p-absorbing self-confirming

equilibrium under 6. O

Lemma 8. If 0 is a p-absorbing SCE, then for any v € (0,1) and € > 0, there exists a
full-support prior 7§ under which, with probability higher than vy, a 8-modeler only plays
actions in supp(c) and her belief stays within B.(AQ(a)) for all periods.*?

Proof of Lemma 8. Suppose there exists a p-absorbing SCE ¢ under 6. Consider the
learning process of a f-modeler. By definition, there exists a full-support prior 7§ € AQY
such that with positive probability, she eventually only plays actions in supp (o) and
each element of supp (0) is played infinitely often (this is without loss of generality).
Denote those paths by H. Then by a similar argument as in the proof of Lemma 1,
7¥ a.s. converges to a limit 7% on H, with supp (78) € Q(0) ={we Q' : ¢ (|a) =
¢’ (-|a,w), Ya € supp (o)}

This implies the existence of an integer 7" > 0 such that, with positive probability, we
have (1) a; € supp(0),Vt > T, (2) 7 converges to a limit 7 with supp(r%) C Q%(0).

43For any set of finite probability distributions Z over sample space S, I use B.(Z) to denote the
set of probability distributions whose minimum distance from any element in Z is smaller than ¢, i.e.
B.(Z)={z€ AS :min,cz dp(z,2) < €}, where dp represents the usual Prokhorov metric over AS.
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Pick any € > 0. Since the learning processes are Markov, we can find a new prior
70 € B(AQY (o)) under which, on a positive measure of histories, a §-modeler behaves
such that (1) a; € supp(c),Vt > 0, and (2') the posterior 7/ almost surely converges to
7% and never leaves B.(AQ%(c)) for all ¢ > 0.

Denote the event described by (1) and (2') by E . I now show for any constant
v € (0,1), there exists a full-support prior 73 under which Pp(E) > ~. Suppose for
contradiction that this is not true. Denote the probability of E under any full-support
prior by y(7?) and let 7 = SUD¢ cing(A00) y(7?), where int(AQ?) denotes all full-support
beliefs over Y, then it follows that 7 < 1. By definition, for any ¢» > 0, there exists some
prior Wg’w such that y(ﬂg’w) > % —1p. But under this prior, with probability 1 — 7(7?8’¢),
the dogmatic modeler eventually either arrives at some posterior 7Tt€ ¥ that either leads
her to play an action outside supp(c) or leaves the neighborhood B.(AQ?(c)). Hence,
there exists an integer 7" > 0 such that

Pp (1(nf") = 0) > 4(mi¥) =¥ > 7 - 20,

Now, consider the supremum probability that E is achieved if the agent starts with a

prior that is equal to one of the possible posteriors W{op’d’. Since

0, 0,
v(mo w) = ]EI;)?EHT’Y(WTw)v
we have
97¢
(T
()5 2
hreHr 1-Pp <’y(7TT’ ) = O)
7=
1—5+2¢

=y
1-7+2¢
7, contradicting the assumption that 7 is the supremum of v(7%) over all full-support

beliefs.

But notice that when v is sufficiently small, the term is strictly larger than

]

Proof of Theorem 1 (iii)= (ii). Pick any competing model # € © and any full-support
prior 7§ € AQY. Let S, := £,(0')/£,(6*), then S, is a martingale with respect to both
Pp and Pg by Lemma 2. By the Ville’s maximal inequality for supermartingales, the

probability that S,, is bounded above by a positive constant larger than 1 is bounded
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away from 0. In particular, for any n € (1, «),

E*PSy _, 1

Pp(S, <n,Vt>0)>1—
n n

Note that this inequality holds for any model &’.

Denote by o a p-absorbing SCE under §. By Lemma 8, we know that for any n € (1, a)
and € > 0, there exist a prior 7§ € B.(AQ%(c)) such that Pp(E) > 1/ (the event E is
defined in the proof of Lemma 8). Therefore,

Pp(E occurs and S; < n,Vt > 0)
> Pp(E) +Pp(S, <1Vt >0)—1>0.

Denote the histories where E occurs and S; < n,Vt > 0 by H. When ¢ is small enough,
we have that on ﬁ,
/ 0" (, 1 =1 ¢ /
_ &(9) . Zw’eﬁf” Ty (W ) HT:()Q (yT|aT,w)
A = 0.(0) 9 i—1 g
+(0) Zweﬂ(’ o (w) [T—p ¢° (y-lar, w)
< ZW’EQ(’/ 77-(0)/ (o‘)/) H:—;lo qé’/ (y7'|a7'7 w/)
6 (20 (o) [T, 20 ¢ (y-lar)

<«

<

1—c¢

where the first inequality follows from the fact that 7 is full-support and the second
inequality follows from the definition of H. Thus, on H, the switcher never makes any
switch to the competing model ¢, i.e. m; = 0,Vt > 0, and her action choices would be
identical to the #-modeler. Therefore, if we endow the switcher with the same prior 7,

event H also occurs with positive probability under Pg. O

B.2 Proof of Theorem 1: (i)=-(iii)

I show that if # is locally robust at some prior, then it must admit a p-absorbing SCE.
Construct a competing model 8 as follows. Let 6" have the identical parameter space as 6,
ie. Q7 = 0f and let its predictions be given by ¢* (:|a,w) = ug? (-la, w)+(1—p)q* (-a),
for all a € A and all w € Q% where € (0,1). For any € > 0, when p is close enough
to 1, we have ¢ € N, (0). By the definition of local robustness, there exists ¢ > 0 such
that 6 persists against ' under some full-support priors 7§ and ng = 7. Consider any
& € Q9 such that

Pg (mt eventually equals 6 and liminf ¢ (&) > O) > 0.

t—o00
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Let A=(0) = {a € A: ¢’(:|a,&) # ¢*(:|]a)}. Then every action in A~(®) is played at
most finite times a.s. on the path where m; eventually equals # and liminf; ., Wf (W) >

0. Suppose instead that actions in A~ (w) are played infinitely often. Then there must

q* (ylat)

Polad) > for infinitely many ¢. So we have

exist some 7y > 0 such that Eln

0 ~ *
q" (ylag, ) ( q* (ylar) >
Emh———F=Ehn|{pu+(1—pu)—"—=] > (1 —pn)y
7 () A=W e )~ A=

where the inequality follows from the concavity of the logarithm function. Therefore,

-1 ’
> e [ro @ (yrlar, w) 7 (w)
—1
> wean [I=o @ (yrlar, w) mf (w)
0 7o (@) [Tr—o d” (yrlar, @)
7T0 (W) HT:() q (yT|aT7w)

)\t:

t—1 9’ ~

0 (- q" (yrla,w)
=m; (W) exp Z Larea-@yIn —7——<
— ¢’ (yr-|a-,w)

which, by Lemma 4, a.s. increases to infinity when m; converges to 6 and lim inf, ., 7%() >
0. This implies that, letting O := {w € Qf : liminf, . 77(&) > 0}, on the paths where
my eventually equals 6, there almost surely exists 7" such that a; € A\U g0 A™ (@), VE >
T. Since ¢? (-|a,) is equal to ¢* (-|a) for all @ € Qf and all @ € A\ Ugeas A7 (@), the
posterior ¢ must converge to a limit 7% . The rest of the arguments are identical to

those in the proof of Lemma 1; it follows that § must admit a p-absorbing SCE. U

B.3 Proof of Corollary 1

I prove Corollary 1 assuming the agent is myopic. I show below that any quasi-strict
SCE satisfies a stability property stronger than p-absorbingness, which implies Corollary
1. Next, I show that if we strengthen quasi-strictness with uniform quasi-strictness, then

Corollary 1 holds for a non-myopic agent as well.

Lemma 9. Suppose o is a quasi-strict SCE with supporting belief 7, then for any v €
(0,1), there exists € > 0 such that starting from any prior 7§ € B.(%), the probability

that the 6-modeler always plays actions in supp(o) for all periods is strictly larger than

Y-

Proof. If o is quasi-strict, then supp (o) = A% (7). Since A’ is upper hemicontinuous
(Lemma 6), there exists € > 0 small enough such that supp (¢) D A% () for all 7 €
B: (7).
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Suppose a; € supp (), Vt > 0, then for every w € Q9\Q(a),

) ] o T e, w)
: [Wt (99(0))|ht] : | ean) ™0 @) 120 (yT|anw’)’ht]

w8 (w) TIZ ¢ (yrlar,w)
Pl @) T e (e
0@ 12 rlarw) 7l (@)
OO T ¢ (yrlar) 7y (Q9(0))

o
o

i (w)
= (Q0())

ﬂ.G 6 0 o
% is also non-negative supermartingale. By the Ville’s maximal inequality
Tl't g

for supermartingales, for any n > 0,

0 (Q\Q(0)) 179 (Q\Q(o))
PD( A@)) © e t)<5 )

Therefore, is a non-negative supermartingale for every w € Q\Q%(o). It follows

that

Since 7 (Q2(0)) =1 — ) (2°\Q(0)), the above inequality implies that

1 (2N\2(0))
n m (Q%(0))

Pp (wf (QN\Q(0)) > for some t) <

1+n

Pick some € € (0,€) and 7§ € B, (), then mf (2°\Q(c)) < e. Notice that the ratio Wt((w,))
remain unchanged throughout all periods for any w,w’ € Qo). Hence, if 7¥ ¢ B: (%)
for some ¢ > 0, then there exists ¢ such that 7{ (Q°\Q%(0)) > 7§ (W\Q(0)) + € — e

Using the previous inequality,

p (7] & Bz (#) for some t > 0)

() (QQ\QH( )) > w5 (\Q°(0)) + & — € for some ¢)
) @20)

) o)

IN

<

Pp
= ( 99\99
(- >1—e

which converges to 0 as € approaches 0. This implies that for any v € (0,1) we have
Pp (7! € Bz (7),Vt > 0) >~ when € is sufficiently small. Notice that 7{ € Bz (7),Vt > 0
in turn implies that a; € supp (o), Vt > 0, validating our assumption.

O
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Say that a SCE or a BN-E ¢ with supporting belief 7 is uniformly quasi-strict if
supp (o) = A% () for every belief 7 € AQ? (7). The following lemma implies that given

any discount factor, a uniformly quasi-strict SCE is p-absorbing.

Lemma 10. Suppose the 6-modeler has discount factor § € (0,1). Suppose o is a
uniformly quasi-strict SCE with supporting belief 7, then for any v € (0, 1), there exists
€ > 0 such that starting from any prior ©i € B(#), the probability that the O-modeler

always plays actions in supp(c) for all periods is strictly larger than ~y.

Proof. Since o is uniformly quasi-strict with supporting belief 7, supp (¢) contains
all myopically optimal actions against each degenerate belief §, concentrated on w €
supp (7). In addition, supp (¢) must be optimal against J,, for an agent who maximizes
discounted utility, because the dynamic programming problem described by (7.2) re-
duces to a static maximization problem when the belief is degenerate. This implies that
supp (o) is also (dynamically) optimal against 7. Further, since A? is upper hemicon-
tinuous (by Lemma 6), there exists € > 0 small enough such that supp (o) = A% (7) for
all T € Bz (m). The rest of the proof is identical to the proof of Lemma 9. ]

B.4 Proof of Theorem 2(i)

Necessity. Suppose @ is locally robust at some full-support prior 7§. It follows from
Theorem 1 and identifiability that there exists @ € Q% such that the degenerate belief
d,, supports a p-absorbing SCE under 6, i.e. C? #£ ().

Sufficiency. Suppose C? # ). Take any & € CY and any full-support prior 3. Con-
sider the probability measure Pg’a, i.e. the probability measure over infinite histories H
induced by the switcher if the true DGP is as described by 6 and @. By identifiability
and Lemma 4, the posterior 7? converges to §; almost surely under Pg’w. So for any
1> 0, we can find a positive measure of length-7" histories Hy where the posterior for
model 6 enters the p-neighborhood of &5, i.e. 74 € B,(d;). Let u be small enough so
that the posterior 74.(&) > 1/y/a. By absolute continuity (Assumption 4), we know Hp
is also realized with positive probability under the true measure Pg.

Next I show that when ) is discrete, we can choose € to be sufficiently small such
that for any 6 € N.(#) and prior 7§ € N.(r0;0,6'), the Bayes factor )\, never exceeds
v/ before period T.* For each w € QY with a slight abuse of notation, denote the set
of “nearby” parameters within 6 by N.(w;6') = {' € Q¥ : d(Q**,Q"*") < €}. Then
we have ¢% (yla,w’) < ¢’(yla,w) +eforally € YV, a € A, and W' € N,(w;0'). Let ¢

44The proof for the case of a continuous ) can be found in Appendix C.
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be sufficiently small such that N (w; @) is disjoint across Q. By construction we have
78 (Ne(w; 0")) < 78(w) + €. Hence,

\ — gt(el) _ZUJEQG Zw’ENe(w;e’) Wg (w/> Ht;:lo qG’ (yT|aT7 w/)
t — - —
((0) > eqr ™ (@) [T =0 ¢ (yrlar, w)
< Zweﬂg (71'8 (w> + 6) Hi_zlo(qﬂ (yT|aT7 LU) + 6)

= -1
> wean T (W) TTZo @° (yrlar, w)

t—1
€ €

=max |1+ ——— ” 14+ —.

w699< WS(W)>T:0< q"(yT|aT,w))

We can choose € to be sufficiently small so that \; does not exceed /o > 1fort =0,...,T

regardless of the action and outcome history.

Finally, note that for any ¢t > T, we can write

S ear TLmr 7 (W) (yr|ar, w')
S weqr Ty 7 (w) g (y-]ar, w)

)\t == )\T = )\T)\T,t-

Recall that on histories Hy we have 74.(&) > 1/y/a, so we can use the same arguments

as in the proof of Theorem 2(ii) to show that Pg(Ar; < v/a,¥t > T) > 0. Since on Hy
we have no switches before period T and e is small enough such that Ay < y/a, we have
Ps(\ < a,Vt > 0) > Pg(Hy) - Po(Apy < Va, ¥t >T) > 0. O

B.5 Proof of Theorem 2(ii) and (iii)

Note that part (iii) immediately follows from part (ii). I now prove part (ii) in two steps.
Necessity. Suppose @ is globally robust at prior 7). By Theorem 1, we know that
there must exist a p-absorbing SCE under 6. By identifiability, any SCE can only be
supported by a pure belief, and hence C? # (). Pick any prior 7§ such that 7§(C?) < 1/a.

Let us construct a competing model @ such that it contains the prediction of C? and
the true DGP. In particular, let Q% = C? U {w*} and let predictions ¢” satisfy that for
all a € A,

o ¢ (|la,w) ifweC?,
¢ (la,w) = ,
q*(-|a) if w=w*"
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In addition, pick some ¢ € (0, 1) and let the prior 7§ be such that

o\ T W) : 9
() = (1 e)ﬂg(ce) it we C’

€ if w=w*.

Since ¢’ is correctly specified, by Lemma 1, on the paths where m; eventually equals
0, the agent eventually only play actions in the support of a SCE almost surely, and her
posterior converges to a supporting belief of the SCE, i.e. 7¢(C?) 2 1. By construction

W&
L) =(1-e¢ > WO((C))M@ w) + el (%),
weC? 0

so we have

) )
O (COR)

Since 0’ is correctly specified, by Lemma 1, on paths where m; eventually equals 6, the

first term almost surely converges to (1 — €)—. Since 7((C?) < 1/a, there exists a

(09
A (9)) > « for sufficiently large ¢, contradicting the assumption

that m; eventually equals 6.

Sufficiency. Suppose C? # 0 and 75(C?) > 1/a. Pick any competing model §' and a
full-support prior 7r0 We will show that model 8 persists against ¢’ at the given priors.

Define a new probability measure PP over the action and outcome histories H such
that for any histories H C H,

()= 3 B ().

weC?

where Pg’“’ is the probability measure over histories induced by the agent switcher if the
true DGP is identical to the DGP prescribed by # and w. Define the following process,
(1 6
t =
T0(C) S o = “0(‘” 20,0, w)

Then it is a martingale w.r.t. P with EP(S\O) = 1/78(C?). By definition, A, > ), where
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the equality holds only if Qf = C?. By Ville’s maximum inequality,

N L) 1
P\ < a,Vt) > P\ <, Vi) > 1 — TOa > 0.

This then implies that there exists & € C? such that
PYe (N < a, V) > 0.

Since € has no traps, it is identifiable and all of its p-absorbing SCEs are quasi-strict.
Identifiability implies that P4 (7¢(w)) 22 1. With quasi-strictness, by Lemma 9, there
exists € > 0 such that the optimal actions must be in the support of a SCE when
7?(0) > 1 —e. Taken together, the no-trap conditions imply that there exists 7' > 0
such that with positive probability (measured by IP’(;"D), the agent plays only SCE actions
after period T" and never switches. Denote the set of such histories by H. Moreover, for
any h € H, denote the observable history for the first 7" periods by hr_ and the history
after the first T periods by fLT+. Since T is finite, by absolute continuity (Assumption
2), for any heH , the history hr_ also occurs with positive probability under the true
measure Pg. Conditional on hy_, since the agent plays only SCE actions on H after the
first T' periods, the two probability measures IPg’w and Pg over H are identical to each

other. Therefore,

Ps(Hr) = Y Ps(hy )Ps(hri|hr-)

iLEfIT
= Z Py(hr- PG (hry |hr-)
iLEfIT
Ps(hr-) g0,z
min MP%W(HT) > 0.

B iLEﬁT ngw(hT_)

This means that with positive probability (under the true probability measure Pg), the

agent never switches to 6. Therefore, model 0 persists against 6.

B.6 Proof of Corollary 2

Note that the proof of Theorem 2 does not use the assumption that o > 1. Therefore,
Corollary 2 is immediately implied by Theorem 2.

B.7 Proof of Theorem 3

I show a more generalized version of Theorem 3:
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Suppose that the action frequency of a 0-modeler almost surely converges under all
full-support priors. If model 6 € ©° is f-constrained locally robust, then it must admit a
p-absorbing BN-E o at which 0 is locally KL-minimizing within the 0-family.

Suppose no Berk-Nash equilibrium o under 6 is locally KL-minimizing at ¢ within

the f-family, but 6 is f-constrained locally robust within the e-neighborhood for some
¢ > 0. Define a function K% : AA x O — R, where

Za ) Dicr (¢" () || 4 (la,w)). (14)

That is, K (0,w) is the o-weighted KL divergence between the prediction of w and the
true DGP. Take any Berk-Nash equilibrium ¢ € AA under #. By assumption, there

must exist some parameter w’ € QY such that mingcqe [|w — '|| < € and

mlr})Ke (o,w) > K% (0,u). (15)
weN
By continuity, there exists some open neighborhood of o, denoted as O,, in which &’

yields a strictly lower KL divergence than 7, i.e. Yo' € O,, we have

min K? (o/,w) > K? (o', ') .
weN?
We know from Lemma 7 that the set of Berk-Nash equilibria under # is compact. There-
fore, by the Heine-Borel theorem, there must exist a finite number of e-close parameters,
collected by a set R, C B.(€2%), such that for any Berk-Nash equilibrium o, we can find
some parameter from the set R, such that the above inequality (15) holds.
Consider a competing model @ with an expanded parameter space QY = Qf U R,,

and some prior ﬂgl that allocates a total probability of € evenly to R.. Formally, let

(W)= (1—€)nd (w),Yw e QF,
T (W) = \R\VWGR

Consider all possible histories in which the switcher eventually adopts 6. It must be that
lim sup, ;00 (0')/4:(0) < « on those paths. Note that the switcher’s action frequency
a.s. converges to a Berk-Nash equilibrium by assumption. Consider the paths where
this limit equilibrium is ¢. Then we can find some 7" > 0 and 1 > 0 such that V¢ > T

, there exists w” € R, such that K? (o,,w") — K? (0,,w) < —n,Yw € Q. It then follows
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Figure 2: Example of a binary-action setting: Each point in the interval represents a
mixed action’s weight assigned to a?; the parameter(s) placed above a segment of the
interval are the minimizer(s) of K (o,w) in Q7 for all o in this segment.
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€
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0 _
A=

> exp (tn)

Therefore, for any a > 0, almost surely, 7' /¢,(0) exceeds « for infinitely many ¢, con-
tradicting the assumption that limsup, .. ¢/ /¢,(f) < a on those paths. Therefore, 6
does not persist against 6’. Since the choice of € is arbitrary, this implies that 6 is not

6-constrained locally robust. 0

B.8 A Necessary Condition for Constrained Local Robustness

The following theorem states a necessary condition for constrained local robustness in a

special environment with binary actions.

Theorem 6. Suppose | A| = 2. Then a model 6 € ©° is O-constrained locally robust only
if it admits a BN-E o at which 6 is locally KL-minimizing within the 0-family.

The critical step in proving Theorem 6 is to show that a dogmatic modeler’s action
frequency almost surely enters an arbitrarily small neighborhood of the set of Berk-Nash
equilibria infinitely often. From here, we can use an analogous argument to the proof of
Theorem 3. I use Figure 2 to illustrate this first step.

When the action space is binary, we can write any mixed action as 3-a'+ (1 — 3)-a?,
where 5 € [0,1]. Therefore, the strategy space can be represented as the unit interval

2. To add more structure, suppose that the

denoting the set of possible weights on a
parameter space ¢ has four elements, each of which is a KL-minimizer in Q? at some

mixed strategies. Since the KL divergence is continuous in the probability of each action,
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it is straightforward to show that the set of mixed strategies at which a parameter is
a KL-minimizer is compact and connected. For example, in Figure 2, w! uniquely
minimizes the KL divergence when evaluated at a mixed action when 3 € [0, 3], while
both w! and w? are minimizers when 3 € [, 3%]. Restrict attention to the set of paths
where the sequence of the action frequency {0}, is such that both w!' and w?* are KL-
minimizers infinitely often but not w?. Since the action space is binary, if o, enters two
non-connected regions on the unit interval infinitely often, it must also cross the region
in between infinitely often.” This implies that o; must enter [3', 3?] infinitely often.
To generate this pattern, it must be that a?> € A% (0,1) and a* € A% (4,2), because
otherwise only one action will be played in the limit. Thus, there exists a mixed belief
over w' and w? that makes the myopic agent indifferent between the actions. Since both
w! and w? are KL-minimizers when 3 € [31, 2], any mixed action with 8 € [y, (2] is
a BN-E, supported by the aforementioned mixed belief. Therefore, the agent’s action
frequency is almost surely arbitrarily close to the set of Berk-Nash equilibria infinitely

often. The argument for other cases is analogous.

Proof. We only need to show that given any e > 0, almost surely, a dogmatic modeler’s
action frequency o; enters the e-neighborhood of some Berk-Nash equilibrium infinitely
often from every full-support prior and policy. Then using a similar argument as in the
proof of Theorem 3, it can be shown that 6 is not A-constrained locally robust if there
is no Berk-Nash equilibrium ¢ such that 6 is locally KL-minimizing at o.

For convenience, let A = {a',a®}. First, consider the paths where o; converges to
some limit 0. denoted by H'. Then Lemma 5 tells us that 7} (Q° (c)) converges to
1. Therefore, any action a & U, AQG(U)A;O” () cannot be in the support of o. Hence,
for each action a in the support of o, there exists some belief 7, € AQ? (o) such that
a € A% (m,). If supp (o) is a singleton, then this immediately implies that o is a Berk-
Nash equilibrium. If instead supp (0) = {a!,a?}, then by the hemi-continuity of A?
there must exist some 7, € AQY (o) such that {a',a?} = A% (m,), which again implies
that ¢ is a Berk-Nash equilibrium. Therefore, her action frequency o; enters the e-
neighborhood of some Berk-Nash equilibrium infinitely often for any € > 0 almost surely
on H'.

Now consider paths where her action frequency oscillates forever, denoted by H?. Let
Q9 be the set of all parameters in Y that are KL-minimizers infinitely often, i.e. Q=
{weQ:weQ (o) for infinitely many ¢ on H?}. Take any w € QY. Suppose that

45This does not hold when |A| > 3 because there can be multiple paths connecting any two mixed
actions. In fact, Example 2 in Esponda et al. (2021) describes a setting with |A| = 3, in which the
dogmatic modeler’s action frequency almost surely oscillates around the unique Berk-Nash equilibrium
but remains bounded away from it.
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A? (6,) = {a',a?}, then each action frequency o,, that satisfies w € Qf (0,,) is a Berk-
Nash equilibrium. By construction, this means o; constitutes a Berk-Nash equilibrium
infinitely often.

Suppose instead that Vw € Q7| we have that AY, (§,) is singleton. Since o; oscillates,
Q% cannot be a singleton. It must be that A% (4,) = {a'} for some w € QY and or
A% (8,,) = {a®} for some other w’ € QY_. Given any w and w’ € Q7 | say they are related
if there exists some mixed action o such that w,w’ € Q9 (¢). I now show that there must
exist such a pair of related parameters such that A% (6,) = {a'} and A%, (6.) = {a?}.

First of all, every parameter in QY. must be related to some other parameter in Q.
Suppose not for the sake of a contradiction. Then there exists some “isolated” parameter
w* € Q% in the following sense: let C,, = {# € [0,1] : w € Q7 (Ba' + (1 — B)a?)}, then
there exists some positive constant v such that B, (C,+)N (Uweggo \ {w*}Cw) = (). However,
since w* is a KL-minimizer infinitely often, it happens infinitely often that o, € C«. It
implies that some KL-minimizer at o € B, (C,+) \C,+ should also be a KL-minimizer

at o, infinitely often yet not included by Q| contradicting the definition of Q? . By

o)
the same logic, there cannot be two cliques in QY such that every parameter in the first
clique is unrelated to every parameter in the second clique.

Hence, if every pair of related parameters in QY induce the same optimal action,
then A% (6,) = {a'} or {a?} for all w € QY

00

there exists a related pair w,w’ € QY such that AY (§,) = {a'} and A% (6./) = {a?}.
Therefore, each mixed action in C, N C,, is a Berk-Nash equilibrium. Notice that each

which we know is not true. Therefore,

C,, is compact and convex. Since o; enters both C, and C,, infinitely many times, it
must be that o; enters the e-neighborhood of C,, N C,, infinitely often for any ¢ > 0.

The proof is now complete. ]

B.9 Proof of Theorem 4

Part (i). Suppose o is a pure p-absorbing BN-E with 6 being locally dominant at o
within the f-family, and o assigns probability 1 to a@ € A. Then there exists a full-support
prior 7 such that a #-modeler eventually only plays G with positive probability. It follows
from Lemma 5 that 7/ (9% (¢)) =¥ 1. For any ¢,y € (0,1), using a similar argument as
in Lemma 8, we know that there exists a full-support prior 7§ with 7§ (QH (cr)) > v such
that with probability higher than (, a #-modeler plays a; = a for all ¢ > 0.

Since Q) is finite, there exists ¢; > 0 such that whenever € < ¢, the e-neighborhoods
of any w € QY and @ € QY do not coincide. It follows from Lemma 2 in Frick et al. (2023)
that the local dominant condition implies that all KL-minimizers in Q(o) correspond

to the same distribution under . Moreover, there exists €5 > 0 s.t. whenever € < ¢,
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we have .
E (q('!avw')> <1
q(-la,w)
for all w € Q9(0), all ' € Qf N B.(Q%0)) \ Q%(0), and all a € supp(o).
Let € < min{ey, e2}. Pick any competing model ¢ € N?(6) with belief 7§ € N?(xf).
Then there exists a correspondence ¢ : Q% = Q% sit. 1(w) = QY N B.(w) \ Q%) and

Ugot(w) = Q7 \ Q9 (0). Pick any & € Q%(o). Since ¢ is uniformly continuous in w, there

exists €3 < €9 such that if € < €3, then at all actions a € supp(c), we have

2 [ Zoein Il w) ‘ .
Q(l 7w)

for all w € QY \ Qo) and all probability distributions f over +(w), and

N, Ny @
B (Zw’euﬂg<g)L(w) f(w >q< ’a’w )) <1

Q('|a7d))

for all probability distributions f over Uge,t(w).

Denote the likelihood of outcomes under the predictions of ¢ and w by ¢;(q,w), i.e.
l(q,w) = Ht;:lo q(y-|ar,w). Let & be an indicator function such that § = 1if a; = @ and
& = 0 otherwise. Note that & is adapted to the filtration of H,;. Define a data-generating

process ¢ as follows,

q(-lar, 0) = &q(-lar, @) + (1 = &)q"(-|ar).

For any w € QY \ Q%(¢) and any distribution f over ¢(w), we have

gtfl(@d)) qA(yt|a,t7(,fj)

(wa £l (g, ) ) ’
< )

gt71<qA7 (':))

_ (Zw’a(w) f(W)l1(q, o) ) ‘ EPo (Zw@(w) F@)a(ylas, ') > ’ "

where f(w') = f(W)l_1(q,w')/ (Zw,,@(w) f(w”)ft_l(q,w”)). Hence, by Ville’'s maximal
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inequality for supermartingales, we know that for any x > 1,

w'e(w wlg ’w/ 1
PD<Z cu L >§K,W>Zl__d.
t\Y>

K
Similarly, for all probability distributions f over Uge,yt(w) and any 1 € (1, ), we have

that
Zw’ U (w) (u’/)gt(q’u’/)
]P)E ( e Qe(n)( ) <77th > 1__1l

gt(dv @) n

Let M == |Q%\ Q%0)|. When & is sufficiently large, we have

Et((j7 d})

1 1 1 M
21——d+M-<1—E>—M:1————>O (16)

P, (Z TNLD) (000 4 () + 7 (0 D)) Vi > 0)

where the first inequality follows from the inequality P(A;...A,) > P(A1)+...+ P(A,) —
(n — 1) for random events Ay, ..., A,. Note that when 7% € N?(x?) and 7%(Q%(0)) > 7,

we have
©(Q%(0)) + 77 (U(Q%(0)))n + 7 (L \ Q(0))k <+ (1 — 7+ )k

Using the observation we derived in the first paragraph, we know that there exists a
full-support prior 7§ under which with probability larger than n—ld + K—%, the dogmatic
modeler’s behavior satisfies that a; = a and ) (Q’ (0)) > 7,V > 0. Note that when
a; = a for all t > 0, we have §(-|a;, @) = q(-|ay,w) for all ¢ > 0. Using the inequality
P(AB) > P(A) + P(B) — 1 for random events A and B, we know that when e <
min{ey, €2, €3}, there exists a full-support prior 7§ such that the following event happens

with positive probability:

a; =aand 7 (Q° (0)) > 1—¢€,Vt >0

>wrear T (@)l (g, )
et(Qa (D)

<n+(1—7+¢ekr,Vt>0

When € is small enough and ~ is sufficiently close to 1, conditional on the above event,
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we have

WO) _ S W @law) _n+(1—7+ds _

£,(0) m6(©2%(0)) (g, @) g

Hence, conditional on this event, the switcher never switches to the competing model

0'. Tt follows that the switcher adopts # forever with positive probability w.r.t. Pg.

Part (ii). Suppose in addition that model # has no traps. Denote by @ the consistent
parameter associated with the pure p-absorbing BNE at which # is locally dominant
within the f-family. A similar argument as in the proof of Theorem 2 implies that for all
v € (0,1), starting from any full-support prior 7, there exists €4 and a positive number
T such that when € < ¢4 and the competing model 6’ is e-close to 6, the Bayes factor
never exceeds \/a before period T' and 74 (@) > 7.

On the other hand, we have the following lemma, which mirrors Lemma 9 but applies

to a strict BN-E. The proof uses similar argument and thus is omitted.

Lemma 11. Suppose a is a strict BN-E with supporting belief oz, then for any ¢ € (0, 1),
there exists v € (0,1) such that starting from any prior 75 € By_,(8,), the probability

that the -modeler always actions in supp(o) for all periods is strictly larger than (.

Following the same steps in the proof of Part (i), we can show that there exists a
small enough v, whose value depends only on the characteristics of model 8 and e but
not the specific competing model, such that with any belief 7% € B;_,(ds), the switcher
adopts model 6 for all periods after T" with positive probability. Therefore, model 6 is

#-constrained locally robust at all priors.

B.10 Proof of Theorem 5

To show that Theorem 1 continues to hold when o > K, it suffices to show that a

model 6 is globally robust at some prior by the new definition if 6§ admits a p-absorbing
SCE. Without loss of generality, take any ©' = {6,...,05} C © and define for each
k€ {l,.., K} aprocess {SF}; as follows,

Zw/eQGk ng (w/) Hj—:o qek (yT|aT7 w/>

Sf = t N
1T o ¢*(y-lar)

Then for any 1 € (1, «), we have

EosE 1
7 n

Pp(SF <Vt >0)>1-—
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Hence, when 7 is sufficiently close to «,
Po(SE <0,V >0,k € {1,.., K})

K
>1 — ZPB(Sf > 7 for some t > 0)
k=1

K
>1——>0.
n
The rest of the argument is identical to the proof in Section B.1. It follows that Theorem
1 also continues to hold when o > K.

For f-constrained local robustness, note that Inequality (16) implies

. <z T WG o (00(g)) 4 2 (o))

gt((j7 W*)

+ 7 Q0 Q% (0)))k, ¥Vt > 0,Vk € {1, ..., K})

>1- 3P (ZQ TS @)+ U o)

gt(qA7 W*)

+ 7 (L(Q°\ Q%(0)))k for some t > 0)

1 M
SRR

If K < a? then the term above is strictly positive when 7 is sufficiently close to o and

k is sufficiently large. The rest of the proof is analogous to the proof in Section B.9. [J

B.11 Proof of Proposition 2

It suffices to show that the agent makes a switch to 0 with positive probability. It then
follows from Proposition 1 that 0 is eventually adopted forever with positive probability.

Define a new probability measure P over the action and outcome histories H such
that for any histories HcCH,

A~

P <H> =l (Wh)Phe" <H> + 0 (wh)ple" <H> ,

where Pg’w is the probability measure over histories induced by the agent switcher if the
true DGP is identical to the DGP prescribed by 6 and w. Then £,(6,w™)/¢,() is a
martingale w.r.t. P with an expectation of 1. Hence, for any n > 1, the probability that
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(6, w™M) /6,(0) < 1 for all t is positive (measured by P). Since a is the only SCE under
model §, by Lemma 1 the agent almost surely eventually play a* on the paths where the
model choice eventually equals 6. If so, the agent’s posterior 7¢ almost surely converges
to d,m. In summary, on paths where m; eventually equals 6, it happens with positive
probability (measured by P) that £,(8,w™)/¢,(8) < n for all t and 7¢ 25 . This then
implies that for any ¢ > 0, we can construct a finite sequence of outcome realizations
(Yo, -+, Yt—1) such that ﬁt(G,wM)/&(é) <npforallt <T and 74 € B.(d,m). Moreover,
since T is finite, this sequence of outcomes are also realized with positive probability

under the true measure Pg. Notice that

0 (6)

M lr(0)
lp(0) ) =(1-¢)

o (W) (6, W) o (W)’

= W%(w

where the right-hand side is strictly larger than o when 7§ (w™) < 1/« if € is close
enough to 0 and 7 is close enough to 1. Therefore, the agent makes a switch from 6 to

6 with positive probability.

B.12 Proof of Proposition 3

Suppose the agent’s action space contains K elements, a' < a?> < ... < af. Define
function h : [w, W] — [w,w@], such that h(w) returns the KL-minimizer evaluated at the
largest myopically optimal action against the degenerate belief 4, i.e. h(w) minimizes
Dk, (q*(-!@(w)) | q(-]a(w), b, w)) where @(w) = max A%(4,). By Assumption 4, there
exists an increasing sequence of intervals {(wy,wrs1)}5, such that wy = w, wx = @,
a* is the unique myopically optimal action over (wj_;,w) and both a*~! and a; are
myopically optimal at wy_;. Function h is flat within each interval. If there exists a
pure BN-E under model 6, then it must be supported by a degenerate belief at w such
that h(w) = w. By Assumption 4, any pure BN-E must also be self-confirming, and any
mixed BN-E cannot be self-confirming.

Suppose b > b*, then h jumps up discontinuously at all cutoffs {w }1<p<x—1. Suppose
there exists no solution to h(w) = w. Then since h(w) > w and h(w) < @, we know that
there must exist & such that h(w) > w for all w € (wye—1,wy+) and h(w') < ' for all
W' € (Wi, wy=11). But this contradicts the observation that h jumps up at wy-. It also
immediately follows that there exists a solution @ to h(w) = & such that h(w') > w’ for
W < @ and h(w”) < w” for W’ < @. Let a be the unique myopically optimal action at
0s. Then a is a pure self-confirming equilibrium, supported by the generate belief at @.
By assumption 4, w € 9, and thus a is also a self-confirming equilibrium under §. Note

that a is uniformly strict. By Corollary 1, model 6 is globally robust.

72



Now suppose the agent is underconfident, then A jumps down discontinuously at the
cutoffs {wk }1<k<r—1. Hence, there exists at most one solution to h(w) = w. Suppose
there exists a SCE of when the agent believes his ability is given by b. Then by the
upper-hemicontinuity of A%, when b is lower than but sufficiently close to b, there exists
some w > w* such that g(aT,lA),d)) = g(a,b*,w*), where af = maxsupp(c') and is the
unique myopically optimal action against &;. It follows that a' is a uniformly strict
SCE under 6. Since there always exists a SCE when the agent is correctly specified, i.e.
b = b*, we infer that model 6 is globally robust when b* — bis sufficiently small.

Suppose instead that there is no solution to h(w) = w when the agent’s self-perception
is given by b. If so, there exists no SCE under model 6. By Theorem 1, 6 is not globally
robust. By continuity, h(w) = h(w) also does not admit any solution at b if it is
sufficiently close to b. Therefore, there exists an open neighborhood around b such that
model 6 is not globally robust. I now show that € is not f-constrained locally robust.
Suppose 6 admits a mixed BN-E &, supported by a potentially mixed belief 7% € AQ?.

k+1 (

Suppose & takes support over a* and a note that both ¢ and #? have at most two

elements in their support). Then for any & € supp(7?), we have
@ € argmino(a*) Dy (q°(Ja") || ' (-la", &) +o (@™ ) Dcr (47 (") 1] 4" (o™, w))

Let w* denote the KL-minimizer in |w,w] at a* and w**! denote the KL-minimizer
in [w,@] at a**!. Since g(a,b,w) — g(a,b*,w*) is strictly increasing in a when b < b*

k

and w > w*, we know that w* > w*. Since w* W' € Qf by assumption, we have

supp(#?) C [w*!, w*]. Hence, for all @ € supp(#?),

with at least one inequality being strict. Suppose the second inequality is strict. Pick
b € (b,b*] and define @ by g(a*, b, &) = g(a*,b,@). Similarly, since g(a, b,w)—g(a, b, @) is
strictly increasing in a, we know that g(a**1,b,&) > g(a**1,b,&); analogously g(a**1, b, &)—
g(aFt1 b*,w*) > 0. Therefore, the G-weighted KL divergence is smaller at (b, @) than at
(b,&). When b is sufficiently close to b, the parameter pair (b, @) is also close to (b, ).
Since the agent’s action frequency converges, by Theorem 3, model @ is not f-constrained
locally robust at b. Moreover, for any b € (5, b*], there exists a competing model 6’ with
(b, ) € QF such that 6 does not persist against ¢'.

Similarly, model @ is not f-constrained locally robust if we perturb the value of b.
Combining this with the previous observation, we could find a sequence of intervals such

that model  is either globally robust or not #-constrained locally robust, each occuring
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within disjoint intervals. 0

C Swupplemental Appendix

C.1 Examples Omitted from Section 4

Example 5 (A p-absorbing mixed SCE). Consider a dogmatic modeler’s problem, where
there are two actions A = {1,2} and three parameters Q’ = {1,1.5,2} inside the
parameter space of model . The agent’s payoff is simply the outcome y,;, with the true
DGP being the normal distribution N(0.25,1) for all actions. Model 6 is misspecified,
predicting that y; ~ N((w — a;)?,1). Note that every mixed action is a self-confirming
equilibrium, with the supporting belief assigning probability 1 to the parameter value of
1.5. Here, every mixed SCE is p-absorbing since its support contains every action that
can be played by the agent. But her action sequence may never converge. To see that,
notice that a belief that assigns larger probability to w = 1 than w = 2 leads to action
a = 2, but such play in turn induces her to attach lower probability to w = 1 than w = 2
and leads to action a = 1. Nevertheless, Corollary 1 tells us that the aforementioned
SCE is indeed p-absorbing.

Example 6 (A self-confirming equilibrium that fails to be p-absorbing). Consider a dog-
matic modeler’s problem, where there are two actions A4 = {1,3} and three parameters
0% = {1,2,3} inside the parameter space of model §. The agent’s payoff is the abso-
lute value of the outcome, |y;|, with the true DGP of y; given by a normal distribution
N(1,1) for all actions. Consider a misspecified model 0 that predicts y; ~ N(w — ay, 1).
Note that € admits a single self-confirming equilibrium in which the agent plays a* = 1
with probability 1, supported by a belief that assigns probability 1 to w* = 2. However,
this SCE is not p-absorbing. To see that, notice that the agent is indifferent between
the two actions when the parameter takes the value of 2. When the agent keeps playing
a = 1, the parameters 1 and 3 fit the data equally well on average, so their log-posterior
ratio is a random walk which a.s. crosses 1 infinitely often. However, the high action
a = 3 is strictly optimal against any belief that assigns a higher probability to w =1
than w = 3. Hence, the high action must be played infinitely often almost surely.

C.2 Micro-Foundation for Application 6.1

In this subsection I specify the payoff structure for the news consumption problem in
Application 6.1, which provides a micro-foundation for Assumption 3.
To do this, we first extend the learning framework introduced in Section 3 to allow

for an unobserved payoff that may depend on an unknown state. That is, besides the
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E’ (payoff|a, w) ‘ wh WM WR E? (payoff|a, w) ‘ wh Wk
a* 14 1.1 1 a* 1.2 1
aM 1.25 1.15 1.25 aM 1.15 1.15
a® 1 1.1 14 a® 1 1.2

Table 5: Expected payoffs under model 6 (left) and expected payoffs under model 6’
(right).

observable payoff jointly determined by the action and the random outcome wu(as, y;),
there may exist an unobserved payoff @(a;,w) that depends on the action and a fun-
damental state w € €. Under any subjective model #, the agent maximizes the sum
of the observed and the unobserved payoff given her belief over the fundamental state
and possibly other parameters. This maximization gives rise to an optimal-action cor-
respondence A% : AQY = A, which we can use to define a self-confirming equilibrium.
All results in Section 4 remain unchanged.

Subscribing to media outlets provide entertainment value. Media outlets produce
higher quality news reports if the story is aligned with their political leaning. If the
agent subscribes to media a”, she earns an emotional utility of 1 iff she receives a [
story; similarly, if she subscribes to media af, she earns an emotional utility of 1 iff
she receives a r story. If she subscribes to the neutral media a™, she earns a constant
emotional payoff of 0.65.

Subscribing to media outlets also provide valuable information. In additional to
subscribing to a media outlet a;, the agent takes an outside action v, € {vt, oM v}
upon receiving the story v;. The agent earns a payoff of 1 if she takes v’ in state w” and
v® in state w’, but in state w she earns a constant payoff of 0.5 by taking any action.
Note that it is optimal for the agent to follow the story she receives in each period.

In Table C.2, I summarize the expected total payoffs associated with each action

under model 6 and model . It is then straightforward to verify Assumption 3.

C.3 Examples Omitted from Section 7

I provide two examples below to substantiate the observation in Footnote 39. Example
7 presents a scenario in which @ persists against 6! and 6% separately but does not persist

against {6',6?}, while Example 8 shows an opposite scenario.

Example 7. Let 2! and 22 be two i.i.d. normally distributed variables, both with mean
0 and variance 1. Suppose z3 and z# are also i.i.d. normally distributed but with mean 1
and variance 1. Suppose the agent can play one of two actions in each period, A = {1, 2}

and uses subjective models to learn about the mean of each element in (x!, 2% 23 z%).
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Her flow payoff is given by a - (z* — 2?). Hence, she would like to play a = 2 if ¢ > 7°
and play a = 1 if 73 > 7*. However, 2! and 2® are only observable when a = 1, while
x? and z* are only observable when a = 2. That is, the outcome y is given by (x!, z3)
when @ = 1 and given by (2%, 2*) when a = 2. She entertains an initial model 6 and two
competing models, {6',6?}, each of which is equipped with a binary parameter space.
The predictions of each model are summarized by the following table. The predicted

means are independent of the actions taken.

0 wl w?

(z', 7%, 7%, 7%) (1,1,1,0) (1,1,0,1)

91 wl/ w2/

(z', 7%, 7%, 7%) (1,0,1,0) (1,0,0,1)

92 wl// w2//
(z', 7%, 7%, 7%) (0,1,1,0) (0,1,0,1)

Notice that there are two strict (and thus p-absorbing) Berk-Nash equilibria under 0:
(1) a = 1 is played w.p. 1, supported by the belief that assigns probability 1 to w'; (2)
a = 2 is played w.p. 1, supported by the belief that assigns probability 1 to w?. First
observe that 0 persists against 6! at a prior 7§ that assigns sufficiently high belief to w!.
This follows from the fact that the likelihood ratio between 6 and ' is always 1 when
a = 1 is played, and that the equilibrium is p-absorbing. Analogously, # persists against
62 at a prior 7§ that assigns sufficiently high belief to w?. However, notice that 6 does
not persist against {6, 6?} at any priors and policies, because regardless of the actions
taken by the agent, at least one of §! and #* would fit the data strictly better than @,
prompting the agent to adopt §' and #? infinitely often.

Example 8. Let y be a normally distributed variable with mean 0 and variance 1, whose
distribution is independent of actions. The agent can play one of two actions in each
period, A = {1,2} and uses subjective models to learn about the mean of y. Her flow
payoff is given by a - y. She entertains an initial model 6 and two competing models,
{6',6%}. Model 0! has a single parameter and perfectly matches the true DGP, while
models 0 and 02 both have a binary parameter space. The predictions about 7 of each

model are summarized by the following table.
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Suppose the agent’s prior satisfies that 7§ (w') = 1 — 7§ (w’) = %2 < 1. First consider
what happens when the agent has only one competing model, 8'. By the Law of Large

Numbers, the likelihood ratio between #' and 6 eventually exceeds o almost surely

because
£t<01) _ Hf—_zlo qgl (y7'|a7'>w/)
G0) T (yelar, wh) md (wh) + T 2o ¢ (yelar, w?) ) (w?)
_ [1= ¢ (yrlar)
= -1 .
170 L(ar=aty " (yrlar) w6 (w') + &(he)
t—1 4
> [1,20¢" (y-lar)
T Iy 50 (welar) + ()
where t,f#’f) converges to 0 almost surely. Threrefore, 8 does not persist against

[T =0 a* (yrlar)
0! under prior {.

However, model @ persists against ©' := {#*,6?} at prior 7§. First notice that for any

ag € A, there exists some g, sufficiently large such that
01(6%) > a - max{t,(0), £, (6")}

and thus the agent switches to 62 in the beginning of period 1. As a result, the agent
plays a; = a? in period 1 since it is the strictly dominant strategy under §?. But then

we could find some sufficiently small y; such that the following two inequalities hold:

5(0) > a - max{ls(0"), (2(6%)},

0 1\ .0 1\ .0 1
1
7T3(u11) _ 71-0("‘) )(] 6<y0|a007w )q (yl|6217"u ) > max{—,c},
> wetor w2y To(w)a? (Yolao, w)q® (y1]ar, w) o

where ¢ is chosen such that while adopting 0!, the agent finds a' payoff-maximizing if
her belief assigns a probability higher than ¢ to w?, i.e. 7%(w!) > c. The first inequality
implies that the agent switches back to 6 in the beginning of period 2. The second
inequality, together with the observation that the pure strategy a' is a uniformly strict
self-confirming equilibrium supported by the belief that assigns probability 1 to w?,
ensures that with positive probability, the agent plays action a' forever, provided that

her decisions are made based on model #. But notice that on those paths, the agent

7



indeed no longer switches to other models after period 1 because for t > 2,

G0Y _ 60" 1154 (yelar)

00 G0 T e o) @)

Since outcomes 1y and y; that satisfy the aformentioned properties are drawn with

positive probability, we conclude that  persists against ©¢ := {#!, %} at prior 7§.
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